• Title/Summary/Keyword: Speed to Insight

Search Result 65, Processing Time 0.025 seconds

Computational analysis of compressibility effects on cavity dynamics in high-speed water-entry

  • Chen, Chen;Sun, Tiezhi;Wei, Yingjie;Wang, Cong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.495-509
    • /
    • 2019
  • The objective of this study is to analyze the compressibility effects of multiphase cavitating flow during the water-entry process. For this purpose, the water-entry of a projectile at transonic speed is investigated computationally. A temperature-adjusted Tait equation is used to describe the compressibility effects in water, and air and vapor are treated as ideal gases. First, the computational methodology is validated by comparing the simulation results with the experimental measurements of drag coefficient and the theoretical results of cavity shape. Second, based on the computational methodology, the hydrodynamic characteristics of flow are investigated. After analyzing the cavitating flow in compressible and incompressible fluids, the characteristics under compressible conditions are focused upon. The results show that the compressibility effects play a significant role in the development of cavitation and the pressure inside the cavity. More specifically, the drag coefficient and cavity size tend to be larger in the compressible case than those in the incompressible case. Furthermore, the influence of entry velocities on the hydrodynamic characteristics is investigated to provide an insight into the compressibility effects on cavitating flow. The results show that the drag coefficient and the impact pressure vary with the entry velocity, and the prediction formulas for drag coefficient and impact pressure are established respectively in the present study.

Design of Fuzzy Controller of Induction Motor Drive with Considering Parameter Variation (파라미터 변동을 고려한 유도전동기 드라이브의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee, Hong-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.111-119
    • /
    • 2002
  • This paper proposes a speed control system based on a fuzzy logic approach, integrated with a simple and effective adaptive algorithms. And this paper attempts to provide a thorough comparative insight into the behavior of induction motor drive with PI, direct and improved fuzzy speed controller. A indirect vector controlled induction motor is simulated under varying operating condition. The validity of the comparative results is confirmed by simulation results for induction motor drive system.

Fuzzy Control of Induction Motor Drive with Considering Parameter Variation (파라미터 변동을 고려한 유도전동기의 퍼지제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1128-1131
    • /
    • 2003
  • This paper proposes a speed control system based on a fuzzy logic approach, integrated with a simple and effective adaptive algorithms. And this paper attempts to provide a thorough comparative insight into the behavior of induction motor drive with PI, direct and improved fuzzy speed controller. A indirect vector controlled induction motor is simulated under varying operating condition. The validity of the comparative results is confirmed by simulation results for induction motor drive system.

  • PDF

Study on the Resistance Prediction and Hull Form Optimization for Mathematical Hull Forms (수학적 선형의 저항특성 추정 및 선형 최적화에 대한 연구)

  • 민계식;이연승;강선형;한범우
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • In order to prepare the fuel-economic hull form design method for fine higher-speed ships, systematic theoretical and experimental study has been performed on the relation between hull form characteristics and ship's resistance and on the effect of the optimization of main hull form characteristics. The results of this study provide not only a great insight into the relation between ship's resistance and hull form characteristics, but also a proper direction of the optimization of main hull form characteristics for the improvement of ship's resistance characteristics.

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

Experimental Model of Frequency-Variant Transmission Line Parameter for High-Speed Signal Propagation Characterization (고속 신호의 전파 특성화를 위한 주파수 종속 전송선 파라미터의 실험적 모델)

  • Kim, Hyewon;Eo, Yungseon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • In this paper, an experimental circuit model for an accurate high-frequency characterization of transmission line is proposed. Inherent resonance effects during measurements make it difficult to determine characteristic impedance and propagation constant at the resonance frequencies corresponding to the line length. Thus, resonance-effect-free transmission line parameter determination technique based on the physical insight and theory is proposed. Then, by using the parameters high-frequency circuit model is proposed for high-speed signal propagation characterization. The proposed frequency-variant transmission line model is verified with measurement and it can be usefully exploited in high-speed signal propagation characterization.

New Fuzzy Controller for Speed Control of IPMSM Drive (IPMSM 드라이브의 속도제어를 위한 새로운 퍼지제어기)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Kim, Jong-Gwan;Jung, Tack-Gi;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.310-313
    • /
    • 2003
  • This paper is proposed new fuzzy controller for high performance of interior permanent magnet synchronous motor (IPMSM) drive New fuzzy controller take out appropriate amounts of accumulated control input according to fuzzy described situations in addition to the incremental control input calculated by conventional direct fuzzy controller. The structures of the proposed controller is motivated by the problems of direct fuzzy controller. The direct controller generally give inevitable overshoot when one tries to reduce rise time of response especially when a system of order higher than one is under consideration. The undesirable characteristics of the direct fuzzy controller are caused by integrating operation of the controller, even though the integrator itself is introduced to overcome steady state error in response. Proposed controller fuzzy clear out integrated quantities according to situation. This paper attempts to provide a thorough comparative insight into the behavior of IPMSM drive with direct and new fuzzy speed controller. The validity of the comparative results is confirmed by simulation results for IPMSM drive system.

  • PDF

Velocity Control and Collision Detection by Feedback Linearization for an Power-assisted Automotive Swing Door (차량의 개폐력 보조 여닫이 문의 되먹임 선형화를 이용한 속도 제어 및 충돌 감지)

  • Lee, Byoungsoo;Park, Min-Kyu;Sung, Kum-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.40-46
    • /
    • 2013
  • Automatic swing door for an automotive application is considered. The equation of motion for a driver side swing door is introduced and gravity cancellation control scheme is adapted. The control scheme supposed to cancel the moment due to the tilt of the car. A speed control is suggested for door operation automation but the output of the speed control is not suppose to be precise as for the manufacturing system control. In the frame of the velocity control of the door, feedback linearization was applied for collision detection. The collision detection performance is satisfactory. The estimate of the magnitude of disturbance due to the collision is close to the actual magnitude of disturbance. Simulation study has been performed to gain insight into the system behavior. Also real test on the prototype hardware has been performed for verification purpose.

Dynamic Task Sequencing of Product Development Process in a Multi-product Environment (다중 프로젝트 상황에서 제품개발 업무의 동적 순서결정)

  • Kang, Chang-Muk;Hong, Yoo-Suk
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.112-120
    • /
    • 2007
  • As the market rapidly changes, the speed of new product development is highlighted as a critical element which determines the success of firms. While firms endeavor to accelerate the development speed, frequent iterations in a development process hinders the effort of acceleration. For this reason, many previous researches tried to find the optimal structure of the development process which minimizes the number of iterations. However, such researches have a limitation in that they can be applied to only a single-project environment. In a multi-project environment, waiting time induced by lack of resources also delays the process as well as the iterations do. In this paper, we propose dynamic sequencing method focusing on both iterations and waiting time for reducing the durations of development projects in a multi-project environment. This method reduces the waiting time by changing the sequence of development tasks according to the states of resources. While the method incurs additional iterations, they are expected to be offset by the reduced waiting time. The results of simulation show that the dynamic sequencing method dramatically improves the efficiency of a development process. Especially, the improvement is more salient as projects are more crowded and the process is more unbalanced. This method gives a new insight in researches on managing multiple development projects.

Utilitarian Value and its Effect on Continuance Intention in Smartphone-based Mobile Commerce (스마트폰 기반 모바일상거래의 실용적가치와 지속이용의도)

  • Choi, Su-Jeong
    • The Journal of Information Systems
    • /
    • v.25 no.3
    • /
    • pp.31-60
    • /
    • 2016
  • Purpose In 2016, the market size of mobile(m-) shopping goes beyeond more than half of a total of online shopping. People use smartphones as the main device for m-commerce. Under the circmustances, this study attempts to address why people prefer to use smartphone-based m-commerce. In other words, it is necessary to understand the main value that smartphone-based m-commerce creates. Drawing on the studies of consumption value, this study focuses on utilitarian value in predicting customers' continuance intention in the context of smartphone-based m-commerce, recognizing that utilitarian value is a key extrinsic motivation in the goal-oriented, performance-oriented shopping contexts. Furthermore, this study identifies factors affecting customers' utilitarian value from the perspective of benefits and costs, following the notion that it represents the result of evaluating a trade-off of benefits and costs caused by smartphone-based m commerce. More specifically, in this study, ubiquitous service, location-based service (LBS), transaction speed, and price utility belong to the benefit dimension, whereas technology anxiety and cognitive effort belong to the cost dimension. Design/methodology/approach To test the proposed hypotheses, the study conducted partial least squares (PLS) analysis with a total of 294 data collected on users with experience in smartphone-based m-commerce. Findings The results show that first, utilitarian value is increased by the benefits, such as ubiquitous service, transaction speed, and price utility. However, LBS has no direct effect on utilitarian value. Second, the noteworthy finding is that ubiquitous service and LBS greatly increase transaction speed. Third, technology anxiety and cognitive effort considered as the cost dimension are negatively associated with utilitarian value but their impacts on it are non-significant. Finally, the results support the argument that utilitarian value is a determinant of continuance intention. Overall, the findings imply that utilitarian value greatly depends on the peception on benefits rather than the aspect of cost in smartphone-based m-commerce. Overall, the findings offer new insight into the studies of m-commerce by considering and verifying the impacts of its benefits and costs simultaneously.