• Title/Summary/Keyword: Speed change

Search Result 3,185, Processing Time 0.033 seconds

Sensorless Speed Control of Induction Motor using Am and FMRLC (ANN과 FMRLC를 이용한 유도전동기의 센서리스 속도제어)

  • Nam Su-Myeong;Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Part Bung-Sang;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.38-41
    • /
    • 2004
  • Artificial intelligence control that use Fuzzy, Neural network, genetic algorithm etc. in the speed control of induction motor recently is studied much. Also, sensors such as Encoder and Resolver are used to receive the speed of induction motor and information of position. However, this control method or sensor use receives much effects in surroundings environment change and react sensitively to parameter change of electric motor and control Performance drops. Presume the speed and position of induction motor by ANN in this treatise, and because using FMRLC that is consisted of two Fuzzy Logic, can correct Fuzzy Rule Base through teaming and save good response special quality in change of condition such as change of parameter.

  • PDF

A Study on the Extraction of Correlated Color Temperature, Illuminance, Control Speed under Controllable LED Lighting in the Kitchen Space (제어가능한 부엌공간 LED조명에서의 색온도, 조도, 제어속도 추출에 관한 연구)

  • Lee, Jin-Sook;Jeong, Chan-Ung;Park, Ji-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.1-14
    • /
    • 2014
  • This study has found out appropriate scopes of correlated color temperature and illuminance value with regard to general diffused lighting and work in the kitchen. It also has presented appropriate photometric quantity control speed for behavioral change with the following results. 1)For general diffused lighting, the appropriate photometric quantity has turned out to be 4,000 to 4,500K in color temperature and illuminance value of 300 to 400lx. And 300lx at 4,500K has proven to be the most comfortable, behavior-appropriate, and preferred pair. 2)As far as appropriate photometric quantity for work is concerned, color temperature of 4,000 to 5,000K and illuminance value of 600 to 800lx are appropriate, while 700lx at 4,500 to 5,000K are the most comfortable, behavior-appropriate, and preferred set. 3)As for appropriate photometric quantity control speed in behavioral change, 3 to 5 seconds has proven the most comfortable, appropriate, and preferred for behavioral change from entry to general areas and 1 to 3 seconds for change from general to work.

Calculation Method and Influence Factor for Speed Change of a Vehicle Impacting Small Sign Post (소형지주에 충돌하는 차량의 속도변화 산정방법과 영향인자)

  • Ko, Man-Gi;Kim, Kee-Dong;Jun, Sung-Min;Sung, Jung-Gon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Important factor in designing a breakaway sign support is the velocity change of the impact vehicle. It is measured from the crash test or can be calculated by 3-D Finite Element Analysis. It can also be calculated with relative ease utilizing energy and momentum conservation. In this paper a formula to calculate the velocity change of a car during the time of impact against a small sign is derived utilizing the energy and momentum balance. Using the formula, parametric studies were conducted to find that impact speed, separation force and Breakaway Fracture Energy(BFE) of the posts which represent the degree of fixedness to the foundation are the important factor to vehicle's speed change. It is shown that speed change is larger in the lower speed impact and to the posts with large separation force and BFE.

Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable (입력변수의 조건에 따른 대기확산모델의 민감도 분석)

  • Chung Jin-Do;Kim Jang-Woo;Kim Jung-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

A Study on the Window Glass Pressure for High-speed Train (고속철도차량의 유리창 압력에 관한 연구)

  • Kwon, Hyeok-Bin;Chang, Dae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.371-375
    • /
    • 2010
  • In order to decide the strength requirement of the window glass for the high-speed train, the pressure change during the passage of the EMU type high-speed train has been numerically simulated. Based on the calculation results, the pressure difference between the inner and outer pressure of the cabin has been calculated to yield the amount of load acting on the window glass of the cabin. To simulate the pressure field generated by the high-speed train passing through the tunnel, computational fluid dynamics based on the axi-symmetric Navier-Stokes equation has been employed. The pressure change inside a train has been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train.

Design and Analysis of the Eddy Current Brake with the Winding Change

  • Cho, Sooyoung;Liu, Huai-Cong;Lee, Ju;Lee, Chang-Moo;Go, Sung-Chul;Ham, Sang-Hwan;Woo, Jong-Hyuk;Lee, Hyung-Woo
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • This paper is a study of the eddy current brake designed to replace the air brake of railway application. The eddy current brake has the advantage of being able to take a high current density compared to the other application because this brake is used for applying brakes to the rolling stock for a shorter amount of time. Also, this braking system has the merit of being able to take a high current density at low speed rather than at high speed, because the heat generated by the low speed operation is less than that of the high speed operation. This paper also presents a method of improving the output torque of the eddy current brake at low speed operation through a change of the winding as well as the basic design.

Mapping vertical bridge deformations to track geometry for high-speed railway

  • Gou, Hongye;Ran, Zhiwen;Yang, Longcheng;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.467-478
    • /
    • 2019
  • Running safety and ride comfort of high speed railway largely depend on the track geometry that is dependent on the bridge deformation. This study presents a theoretical study on mapping the bridge vertical deformations to the change of track geometry. Analytical formulae are derived through the theoretical analysis to quantify the track geometry change, and validated against the finite element analysis and experimental data. Based on the theoretical formulae, parametric studies are conducted to evaluate the effects of key parameters on the track geometry of a high speed railway. The results show that the derived formulae provide reasonable prediction of the track geometry change under various bridge vertical deformations. The rail deflection increases with the magnitude of bridge pier settlement and vertical girder fault. Increasing the stiffness of the fasteners or mortar layer tends to cause a steep rail deformation curve, which is undesired for the running safety and ride comfort of high-speed railway.

The Effects of Horizontal Curves on Vehicle Speeds and Accidents (평면곡선부의 속도 및 교통사고 영향분석연구)

  • 이점호;이동민;최재성
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2000
  • The Purpose of this Paper was to study the relationship between the change of operating speeds and the accidents on horizontal curves. For this purpose, we divided a horizontal curve section into two parts, a tangent section and a curve section, to estimate the operating speed for each vehicle. For studying relationship between the change of speed and geometric effect, the free-flow speed was used. The location and speed for the lowest speed were studied. Also, we analyzed the relationship between the change of operating speeds and the accidents. The followings are resulted in this study. First, drivers tend to reduce speeds significantly before they reach a curve. And the lowest speed was recorded at the downstream of the Point of curve (PC) due to the limited sight-distance of drivers on curve. Second, the larger the change of operating speeds become, the greater frequency of accident was recorded. These results can be used for developing the safety index on highways to check the design consistency.

  • PDF

Kinematic Analysis According to the Intentional Curve Ball at Golf Driver Swing (골프 드라이버 스윙 시 의도적인 구질 변화에 따른 운동학적 분석)

  • Hong, Soo-Young;So, Jae-Moo;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • The purpose of This study's aim is to examine the difference in the changes of body segment movement, variables for ball quality, and carry at golf driver swing according to the ball quality using comparative analysis. Regarding the impact variables according to the ball quality using the track man and carry, club speed was the fastest at draw shot, ball speed was the fastest at straight shot, and smash factor was the lowest at draw shot. About the vertical launch angle, the fade shot showed the highest launch angle while the max height of the ground and ball was the highest at fade shot. And carry was the longest at draw shot. For the flight time, it was the longest at draw shot. The landing angle was the largest at fade shot. About the club head position change and trajectory, at the overall event point, the fade shot drew a more outer trajectory at the point of the follow through(E6) than the straight or draw shot. Regarding the angular speed of shoulder rotation, at the overall event point, the fade shot showed the greatest angular speed change in the follow through(E6). Also, about the angular speed of pelvic rotation, at the overall event point, the draw shot showed the greatest angular speed change at the point of down swing(E4). Concerning the stance angle change, both straight and fade shots were open as the concept of open stance whereas the draw shot was close as that of close stance. Regarding the previous study, the most important factor of deciding Ball Quality is the club face angle's open and close state at Impact. In short, the Ball Quality and carry were decided by this factor.

A Study on the Observation of the Typhoons that Affected Southeastern Region of the Korean Peninsula (한반도 동남권역에 영향을 미친 태풍 관측 연구)

  • Jung, Woo-Sik;Park, Jong-Kil;Kim, Eun-Byul
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1191-1203
    • /
    • 2011
  • In case of Typhoon Dianmu, the temperature, wind speed, wind direction and the rainfall per hour changed dramatically when the center of the typhoon passed through Gimhae. Such a change was commonly found in the regions where the center of the typhoon passed through but almost not in the regions far away from it. For example, in the case of Typhoon Malou where the center of the typhoon was far away from the observation site, such a phenomenon was not observed. The analysis of the vertical observation data showed that there was a little change in the wind speed and wind direction in the vertical direction in the case of Typhoon Dianmu of which center passed through Gimhae. There was a great change in the wind speed according to the height in the lower atmosphere just before the center of the typhoon approached the region. When the center of the typhoon was passing through the region, the vertical wind speed was decreased. However, the wind speed was rapidly increased again after the center of the typhoon had passed through the region. Unlike the Dianmu, the difference in the wind speed and wind direction between the upper layer and lower layer of the atmosphere was relatively great in the case of Malou.