• Title/Summary/Keyword: Speed and power control

Search Result 2,402, Processing Time 0.042 seconds

Maximum Output Power Control of Wind Generation System Using Fuzzy Control (퍼지제어를 이용한 풍력발전 시스템의 최대출력 제어)

  • Abo-Khalil, Ahmed. G.;Kim, Young-Sin;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.497-504
    • /
    • 2005
  • For maximum output power, wind turbines are usually controlled at the speed which is determined by the optimal tip-speed ratio. This method requires information of wind speed and the power conversion coefficient which is varied by the pitch angle control. In this paper, a new maximum output power control algorithm using fuzzy logic control is proposed, which doesn't need this information. Instead, fuzzy controllers use information of the generator speed and the output power. By fuzzy rules, the fuzzy controller produces a new generator reference speed which gives the maximum output power of the generator for variable wind speeds. The proposed algorithm has been implemented for the 3[kW] cage-type induction generator system at laboratory, of which results verified the effectiveness of the algorithm.

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System (계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석)

  • No, Gyeong-Su;Ryu, Haeng-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

Modeling of a Variable Speed Wind Turbine in Dynamic Analysis

  • Kim, Seul-Ki;Kim, Eung-Sang;Jeon, Jin-Hong
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.51-57
    • /
    • 2004
  • This paper describes the dynamic performance of a variable speed wind turbine system responding to a wide variety of wind variations. Modeling of the wind generation using power electronics interface is proposed for dynamic simulation analysis. Component models and equations are addressed and their incorporations into a transient analysis program, PSCAD/EMTDC are provided. A wind model of four components is described, which enables observing dynamic behaviors of the wind turbine resulting from wind variations. Controllable power inverter strategies are intended for capturing the maximum power under variable speed operation and maintaining reactive power generation at a pre-determined level for constant power factor control or voltage regulation control. The components and control schemes are modeled by user-defined functions. Simulation case studies provide variable speed wind generator dynamic performance for changes in wind speed

High Power Factor Control of High-speed Single-phase BLDC Motor (초고속 단상 BLDC 전동기의 고역률 전력 제어 방법)

  • Lee, Wook-Jin;Jung, Bumun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • This paper presents a power control method of high-speed single-phase BLDC motor. Most electric appliances require a power factor corrector (PFC) to mitigate grid current harmonics. However, the reactive components and power semiconductors in the PFC increase system cost and dimension. In this paper, a new motor drive system for a high-speed single-phase BLDC motor is proposed, which can decrease grid current harmonics without PFC by directly manipulating motor power and eliminating bulky electrolytic dc-link capacitor. Given that the proposed motor power control method does not require motor current controller, no current sensor is necessary. Moreover, the proposed algorithms can be easily implemented using a low-cost micro-controller. The effectiveness of the proposed power control method is verified by experiments.

Adaptive maximum power point tracking control of wind turbine system based on wind speed estimation

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.460-475
    • /
    • 2018
  • In the variable-speed wind energy system, to achieve maximum power point tracking (MPPT), the wind turbine should run close to its optimal angular speed according to the wind speed. Non-linear control methods that consider the dynamic behavior of wind speed are generally used to provide maximum power and improved efficiency. In this perspective, the mechanical power is estimated using Kalman filter. And then, from the estimated mechanical power, the wind speed is estimated with Newton-Raphson method to achieve maximum power without anemometer. However, the blade shape and air density get changed with time and the generator efficiency is also degraded. This results in incorrect estimation of wind speed and MPPT. It causes not only the power loss but also incorrect wind resource assessment of site. In this paper, the adaptive maximum power point tracking control algorithm for wind turbine system based on the estimation of wind speed is proposed. The proposed method applies correction factor to wind turbine system to have accurate wind speed estimation for exact MPPT. The proposed method is validated with numerical simulations and the results show an improved performance.

Fixed speed wind power generation system modeling and transient state stabilization method using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고정속 풍력발전시스템 모델링 및 과도상태 안정화기법)

  • Kim, Young-Ju;Park, Dae-Jin;Ali, Mohd Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1178-1179
    • /
    • 2008
  • This paper describes a modeling of fixed speed wind power generation system which comprise of wind turbine, generator and grid. The wind turbine is based on MOD-2, which is IEEE standard wind turbine, and includes a component using wind turbine characteristic equation. Fixed speed induction generator is directly connected to grid, so the variation of wind speed has effects on the electrical torque and electrical output power. Therefore the power control mode pitch control system is necessary for aerodynamic control of the blades. But the power control mode does not operate at the fault condition. So it is required some methods to control the rotor speed at transient state for stabilization of wind power system. In this paper, simulation model of a fixed speed wind power generation system based on the PSCAD/EMTDC is presented and implemented under the real weather conditions. Also, a new pitch control system is proposed to stabilize the wind power system at the fault condition. The validity of the stabilization method is demonstrated with the results produced through sets of simulation.

  • PDF

Sliding Mode Controller for Torque and Pitch Control of PMSG Wind Power Systems

  • Lee, Sung-Hun;Joo, Young-Jun;Back, Ju-Hoon;Seo, Jin-Heon;Choy, Ick
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • We propose a torque and pitch control scheme for variable speed wind turbines with permanent magnet synchronous generator (PMSG). A torque controller is designed to maximize the power below the rated wind speed and a pitch controller is designed to regulate the output power above the rated wind speed. The controllers exploit the sliding mode control scheme considering the variation of wind speed. Since the aerodynamic torque and rotor acceleration are difficult to measure in practice, a finite time convergent observer is designed which estimates them. In order to verify the proposed control strategy, we present stability analysis as well as simulation results.

PWM Control of Hydraulic Motor Systems Using High Speed Solenoid Valves (고속응답 전자밸브에 의한 유압 모터계의 PWM 제어)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.387-392
    • /
    • 1999
  • The micro electronic control technology with developing microcomputers make great contribution to electrohydraulic control systems. The electrohydraulic pulse control simplifies in conjunction with power electronic amplifier and high speed operated solenoid valves. It is necessary to valves to convert electronic pulse signal to hydraulic pulse flow as fast as possible. This study deals with the speed control of an oil hydraulic motor operated by two way high speed solenoid valves. The valves acts as converters of electronic-pulse signals to hydraulic power. By constructing systems in which a hydraulic motor is operated by two solenoid valves, the pulse with modulation method (PWM) has adopted as the speed control of hydraulic motor systems. The static and dynamic characteristics of the systems are investigated by the experiment. It is clarify that a hydraulic motor operated PWM show good performance as a control component, achieving accurate velocity control.

  • PDF

Effect of Adjustable Speed Pumped Storage Power Generator on the Frequency Control Against the Intermittence of Wind Turbine Output (풍력발전기 출력변동성에 대비한 가변속 양수발전기의 주파수 제어효과)

  • Park, Min-Su;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.338-342
    • /
    • 2014
  • Energy storage is a key issue when integrating large amounts of intermittent and non-dispatchable renewable energy sources into electric power systems. To maintain the instantaneous power balance and to compensate for the influence of power fluctuations from renewable sources, flexible capability for power control is needed. Adjustable Speed Pumped Storage Power Generator is pumped storage unit that is adjustable for pump output adjustments as well as the highest efficiency operations because it has fast response time. In this paper we address the adjustable speed pumped storage power generator for frequency control against the intermittence of wind turbine output and calculate the appropriate capacity of adjustable speed pumped storage power generator.