• Title/Summary/Keyword: Speed Estimator

Search Result 262, Processing Time 0.029 seconds

A Sensorless Position Control System of SPMSM with Direct Torque Control (직접 토크제어에 의한 센서리스 SPMSM의 위치 제어 시스템)

  • Kim Min-Ho;Kim Nam-Hun;Kim Dong-Hee;Kim Min-Huei;Hwang Don-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.397-400
    • /
    • 2001
  • This paper presents a implementation of digital sensorless position control system of surface permanent-magnet synchronous motor (SPMSM) drive with a direct torque control (DTC). The system are stator flux and torque observer of stator flux feedback control model that inputs are current and voltage sensing of motor terminal with estimated rotor angle for a low speed operating area, two hysteresis band controllers, an optimal switching look-up table, rotor speed estimator, and IGBT voltage source inverter by using fully integrated control software. The developed sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0 (kW) purposed servo drive SPMSM.

  • PDF

Design of a Robust Stable Flux Observer for Induction Motors

  • Huh, Sung-Hoi;Seo, Sam-Jun;Choy, Ick;Park, Gwi-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.280-285
    • /
    • 2007
  • This paper presents a robustly adaptive flux observer for speed-sensorless induction motor control. The proposed approach employs additional robustifying signals to cope with the parametric uncertainties instead of designing an estimator, which has been normally used in power electronic drives. For that, the sliding-mode like adaptive controls are designed and their gain parameters are determined so that the observer dynamics are stable in the sense of Lyapunov, and furthermore they can guarantee the robustness against parametric uncertainties in induction motor systems. Estimated rotor speed is to be used to generate feedback control signal for the speed sensorless vector control system. To show the validity and efficiency of the proposed system, simulation results are presented.

A study on the feedback linearization for Induction Motor (IM의 궤환 선형화에 대한 연구)

  • Lim, Jae-Hun;Jang, Ki-Yeol;Park, Seung-Kyu;Ahn, Ho-Goon;Kwak, Gun-Pyung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1650-1651
    • /
    • 2007
  • This paper presents a novel nonlinear speed control strategy for induction motor utilizing exact feedback linearization with states feedback. The speed and flux control loops utilize nonlinear feedback which eliminates the need for tuning, while ordinary proportional-integral controllers are used to control the stator current of d-axis the speed. The control scheme is derived in rotor field coordinates and employs an appropriate estimator for estimation of the rotor flux angle, flux magnitude.

  • PDF

Speed-up of the Matrix Computation on the Ridge Regression

  • Lee, Woochan;Kim, Moonseong;Park, Jaeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3482-3497
    • /
    • 2021
  • Artificial intelligence has emerged as the core of the 4th industrial revolution, and large amounts of data processing, such as big data technology and rapid data analysis, are inevitable. The most fundamental and universal data interpretation technique is an analysis of information through regression, which is also the basis of machine learning. Ridge regression is a technique of regression that decreases sensitivity to unique or outlier information. The time-consuming calculation portion of the matrix computation, however, basically includes the introduction of an inverse matrix. As the size of the matrix expands, the matrix solution method becomes a major challenge. In this paper, a new algorithm is introduced to enhance the speed of ridge regression estimator calculation through series expansion and computation recycle without adopting an inverse matrix in the calculation process or other factorization methods. In addition, the performances of the proposed algorithm and the existing algorithm were compared according to the matrix size. Overall, excellent speed-up of the proposed algorithm with good accuracy was demonstrated.

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

Pilot Symbol Assisted High Speed Packet Transmission System based on Adaptive OFDM in Broadband Mobile Channel

  • Ahn, Chang-Jun;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2003
  • 4G mobile communication system requires the throughput of 10-100Mbps. Adaptive modulated OFDM system is promising technique for increasing the throughput. In the pilot symbol assisted high-speed packet transmission system, the data symbol duration is generally considered to be small compared to the coherence time. However, OFDM symbol duration is longer than the symbol duration of a single carrier system, so that the packet duration of the pilot symbol assisted high speed packet transmission system is long. In this case, the change of channel conditions is too fast to be accurately estimated by channel estimator at the receiver in high Doppler frequency, so that many errors occur during demodulation, especially with the data symbols at the end of each packet. In this paper, we consider the BER at various instantaneous $E_b/N_o$ that includes the demodulation errors in high Doppler frequency. When the coherence time is ten times longer than the duration of a single packet, the channel can be closely approximated as an AWGN channel. Otherwise, the approximation breaks down and the above-mentioned errors that occur during demodulation must be taken into consideration. In this paper, we propose the pilot symbol assisted high speed packet transmission system based on adaptive OFDM using a novel lookup table to consider the demodulated errors and evaluate the throughput performance.

Estimation of hardening depth using neural network in LASER surface hardening process (레이저 표면경화공정에서 신경회로망을 이용한 경화층깊이의 측정)

  • 박영준;우현구;조형석;한유희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.212-217
    • /
    • 1993
  • In this paper, the hardening depth in Laser surface hardening process is estimated using a multilayered neural network. Input data of the neural network are surface temperature of five points, power and travelling speed of Laser beam. A FDM(finite difference method) is used for modeling the Laser surface hardening process. This model is used to obtain the network's training data sample and to evaluate the performance of the neural network estimator. The simulational results showed that the proposed scheme can be used to estimate the hardening depth on real time.

  • PDF

Speed Sensorless Control of Ultrasonic Motors Using Neural Network

  • Yoshida Tomohiro;Senjyu Tomonobu;Nakamura Mitsuru;Urasaki Naomitsu;Funabashi Toshihisa;Sekine Hideomi
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • In this paper, a speed sensorless control for an ultrasonic motor (USM) using a neural network (NN) is presented. In the proposed method, rotor speed is estimated by a three-layer NN which adapts nonlinearities associated with load torque and motor temperature into control. The intrinsic properties of a USM, such as high torque for low speeds, high static torque, compact size, etc., offer great advantages for industrial applications. However, the speed property of a USM has strong nonlinear properties associated with motor temperature and load torque, which make accurate speed control difficult. These properties are considered in designing a control method through the application of mathematical models. In these strategies, a detailed speed model of the USM is required which makes actual applications impractical. In the proposed method, a three-layer NN estimates the speed of the USM from the drive frequency, the root mean square value of input voltage and the surface temperature of the USM, where no mechanical speed sensor is needed. The NN speed based estimator enables inclusion of variations in driving conditions due to input signals of the NN involved during the driving state of the USM. The disuse of sensors offers many advantages on both the cost and maintenance front. Moreover, the model free sensorless control method offers practical controller construction within a small number of parameters. To validate the proposed speed sensorless control method for a USM, experiments have been executed under several conditions.

A Study on the Sensorless Speed Control of Permanent Magnet Direct Current Motor (영구자석 직류전동기의 센서리스 속도제어에 관한 연구)

  • Oh, Sae-Gin;Kim, Hyun-Chel;Kim, Jong-Su;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.694-699
    • /
    • 2012
  • This paper proposes a new sensorless speed control scheme of permanent magnet DC motor using a numerical model and hysteresis controller, which requires neither shaft encoder, speed estimator nor PI controllers. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing torque difference, the rotor speed approaches to the model speed, namely setting value and the system can control motor speed precisely. As the numerical model whose electric parameters are the same as those of the actual motor is adopted, the armature rotating speed can be converged to the setting value by controlling torque on both sides to be equalized. And the hysteresis controller controls torque by restricting the torque errors within respective hysteresis bands, and motor torque are controlled by the armature voltage. The experiment results indicate good speed and load responses from the low speed range to the high, show accurate speed changing performance.

Sensorless Vector Control of Spindle Induction Motors Using Rotor Flux Observer with a Variable Bandwidth (가변게인 회전자 자속관측기에 근거한 스핀들 유도전동기의 센서리스 속도제어)

  • Yu, Jae-Sung;Sin, Soo-Cheol;Lee, Won-Cheol;Park, Sang-Hoon;Won, Chung-Yuen;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.417-425
    • /
    • 2006
  • This paper presents a new speed sensorless vector control scheme of Spindle Induction Motors(SIM) which can be successfully applied to at any speed including even zero speed. The proposed sensorless vector control of SIM uses rotor flux estimator with a variable bandwidth. This approach is based on the Closed-Loop Rotor Flux Observer(CLRFO) which includes a variable bandwidth of the PI controller. For low speed operation, the bandwidth of CLRFO has a variable bandwidth structure according to the estimated rotor velocity. The experimental results show the satisfactory operation of the proposed sensorless algorithm.