• 제목/요약/키워드: Speech Feature Extraction

검색결과 155건 처리시간 0.026초

베이시안 기법과 선택적 음성특징 추출을 융합한 음성 인식 성능 향상 (Voice Recognition Performance Improvement using the Convergence of Bayesian method and Selective Speech Feature)

  • 황재천
    • 한국융합학회논문지
    • /
    • 제7권6호
    • /
    • pp.7-11
    • /
    • 2016
  • 일반적인 어휘 인식 시스템은 백색 잡음과 음성을 인식하는 환경에서 여러 음성의 혼재되어 정확한 음성을 인식하지 못하고 있다. 따라서 본 논문은 효율적인 음성 인식을 위해 잡음 음성으로 부터 원하는 음성만 선택적으로 추출하기 위한 방법과 베이시안 기법을 융합 방법을 제안한다. 음성의 선택적 추출을 위해 필터 뱅크 주파수 응답 계수를 사용한다. 하며, 이를 위해 모든 가능한 두 관측치의 조합에 대해 변수 관측치를 사용하며, 음성 신호 정보를 가지고 선택적 음성 특징 추출을 위해 잡음은 출력에 대한 에너지 비율을 구한다. 이것은 음성 특징을 추출하는 방법을 제안하며, 이를 베이시안 기법의 어휘 인식을 융합하여 잡음을 제거하고 인식률을 향상시켰다. 본 논문에서 기존의 HMM과 CHMM 방법과 비교한 결과 잡음 환경에서의 인식률이 2.3% 향상됨을 확인하였다.

잡음환경에서 음성-영상 정보의 통합 처리를 사용한 숫자음 인식에 관한 연구 (A Study on Numeral Speech Recognition Using Integration of Speech and Visual Parameters under Noisy Environments)

  • 이상원;박인정
    • 전자공학회논문지CI
    • /
    • 제38권3호
    • /
    • pp.61-67
    • /
    • 2001
  • 본 논문에서는 한국어 숫자음 인식을 위해 음성과 영상 정보를 사용하고, 음성에 사용하는 선형예측계수 알고리즘을 영상에 적용하는 방법을 제안한다. 입력으로 얻어지는 음성신호는 0.95의 매개변수를 통해 고역 신호가 강조되고, 해밍창과 자기상관 분석, Levinson-Durbin 알고리즘에 의해 13차 선형예측계수를 구한다. 마찬가지로, 그레이 영상신호도, 음성의 자기상관 분석, Levinson-Durbin 알고리즘을 사용하여 13차의 2차원 선형예측계수를 구한다, 이러한 음성/영상 신호에 대한 선형예측계수들은 다층 신경회로망에 적용하여 학습이 이루어졌고, 각 레벨의 잡음이 섞인 음성신호를 적용한 결과, 숫자음 '3', '5', '9' 에서 음성만으로 인식한 결과보다 훨씬 좋은 인식결과를 얻을 수 있었다. 결과적으로, 본 연구에서는 영상 신호의 2차원 선형 예측 계수들이 음성인식에 사용될 경우, 특징 추출에 따른 부가적인 알고리즘이 새로 고안될 필요가 없이, 음성특징 계수를 추출하는 방법을 그대로 사용할 수 있으며, 또한 데이터량과 인식율이 잡음 환경에서 보다 향상되는 효율적인 방법을 제시하고 있음을 알 수 있었다.

  • PDF

Research on Chinese Microblog Sentiment Classification Based on TextCNN-BiLSTM Model

  • Haiqin Tang;Ruirui Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.842-857
    • /
    • 2023
  • Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speech and emoticons without comprehending users' emotional inclinations and grasping moral nuances. This study proposes a hybrid sentiment analysis model. Given the distinct nature of microblog comments, the model employs a combined stop-word list and word2vec for word vectorization. To mitigate local information loss, the TextCNN model, devoid of pooling layers, is employed for local feature extraction, while BiLSTM is utilized for contextual feature extraction in deep learning. Subsequently, microblog comment sentiments are categorized using a classification layer. Given the binary classification task at the output layer and the numerous hidden layers within BiLSTM, the Tanh activation function is adopted in this model. Experimental findings demonstrate that the enhanced TextCNN-BiLSTM model attains a precision of 94.75%. This represents a 1.21%, 1.25%, and 1.25% enhancement in precision, recall, and F1 values, respectively, in comparison to the individual deep learning models TextCNN. Furthermore, it outperforms BiLSTM by 0.78%, 0.9%, and 0.9% in precision, recall, and F1 values.

음성명령기반 26관절 보행로봇 실시간 작업동작제어에 관한 연구 (A Study on Real-Time Walking Action Control of Biped Robot with Twenty Six Joints Based on Voice Command)

  • 조상영;김민성;양준석;구영목;정양근;한성현
    • 제어로봇시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.293-300
    • /
    • 2016
  • The Voice recognition is one of convenient methods to communicate between human and robots. This study proposes a speech recognition method using speech recognizers based on Hidden Markov Model (HMM) with a combination of techniques to enhance a biped robot control. In the past, Artificial Neural Networks (ANN) and Dynamic Time Wrapping (DTW) were used, however, currently they are less commonly applied to speech recognition systems. This Research confirms that the HMM, an accepted high-performance technique, can be successfully employed to model speech signals. High recognition accuracy can be obtained by using HMMs. Apart from speech modeling techniques, multiple feature extraction methods have been studied to find speech stresses caused by emotions and the environment to improve speech recognition rates. The procedure consisted of 2 parts: one is recognizing robot commands using multiple HMM recognizers, and the other is sending recognized commands to control a robot. In this paper, a practical voice recognition system which can recognize a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

CCTV 응급상황에 따른 지능형 음성인식 시스템 구현 (Implementation of Intelligent Speech Recognition System according to CCTV Emergency Information)

  • 조영임;장성순
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.415-420
    • /
    • 2009
  • 일반적으로 어떤 순간에 발생할지 모르는 응급 상황을 CCTV의 영상 정보만으로 상황을 항상 모니터링하기에는 인력과 비용의문제점이 발생되고 있다. 본 논문에서는 응급상황을 동적으로 보여주는 CCTV환경에서 감지하기 위해 음성인식 기술을 도입하여 문제점을 해결하고자 한다. 이를 위해 본 논문에서는 HMM(Hidden Markov Model) 기반 음성인식을 이용하여, 상황판단의 선택 여부로 고려하였으며, CCTV 환경의 기본적인 잡음 환경은 Wiener 필터를 이용하여 효과적으로 제거하고자 하며, 향후 응급 상황만을 효과적으로 CCTV 관리자에게 제공을 하여 상황인지 하고자 한다.

KL 변환을 이용한 multilayer perceptron에 의한 한국어 연속 숫자음 인식 (Korean continuous digit speech recognition by multilayer perceptron using KL transformation)

  • 박정선;권장우;권정상;이응혁;홍승홍
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.105-113
    • /
    • 1996
  • In this paper, a new korean digita speech recognition technique was proposed using muktolayer perceptron (MLP). In spite of its weakness in dynamic signal recognition, MLP was adapted for this model, cecause korean syllable could give static features. It is so simle in its structure and fast in its computing that MLP was used to the suggested system. MLP's input vectors was transformed using karhunen-loeve transformation (KLT), which compress signal successfully without losin gits separateness, but its physical properties is changed. Because the suggested technique could extract static features while it is not affected from the changes of syllable lengths, it is effectively useful for korean numeric recognition system. Without decreasing classification rates, we can save the time and memory size for computation using KLT. The proposed feature extraction technique extracts same size of features form the tow same parts, front and end of a syllable. This technique makes frames, where features are extracted, using unique size of windows. It could be applied for continuous speech recognition that was not easy for the normal neural network recognition system.

  • PDF

Construction of Customer Appeal Classification Model Based on Speech Recognition

  • Sheng Cao;Yaling Zhang;Shengping Yan;Xiaoxuan Qi;Yuling Li
    • Journal of Information Processing Systems
    • /
    • 제19권2호
    • /
    • pp.258-266
    • /
    • 2023
  • Aiming at the problems of poor customer satisfaction and poor accuracy of customer classification, this paper proposes a customer classification model based on speech recognition. First, this paper analyzes the temporal data characteristics of customer demand data, identifies the influencing factors of customer demand behavior, and determines the process of feature extraction of customer voice signals. Then, the emotional association rules of customer demands are designed, and the classification model of customer demands is constructed through cluster analysis. Next, the Euclidean distance method is used to preprocess customer behavior data. The fuzzy clustering characteristics of customer demands are obtained by the fuzzy clustering method. Finally, on the basis of naive Bayesian algorithm, a customer demand classification model based on speech recognition is completed. Experimental results show that the proposed method improves the accuracy of the customer demand classification to more than 80%, and improves customer satisfaction to more than 90%. It solves the problems of poor customer satisfaction and low customer classification accuracy of the existing classification methods, which have practical application value.

켑스트럼 정규화와 켑스트럼 거리기반 묵음특징정규화 방법을 이용한 잡음음성 인식 (Cepstral Normalization Combined with CSFN for Noisy Speech Recognition)

  • 최숙남;신광호;정현열
    • 한국멀티미디어학회논문지
    • /
    • 제14권10호
    • /
    • pp.1221-1228
    • /
    • 2011
  • 일반적인 음성인식 시스템은 보통 실내 환경에서는 잘 동작하지만 잡음이 존재하는 실제 환경에서는 여러 가지 잡음의 영향으로 그 성능이 급격히 떨어진다. 본 논문에서는 잡음환경에 강인한 음성인식을 위하여 훈련 환경과 실제 환경의 불일치를 줄이기 위한 방법으로 켑스트럼 거리기반 묵음특징 정규화(CSFN: Cepstral distance based SFN) 방법에 켑스트럼 정규화 방법(CMVN:cepstral mean and variance normalization)을 결합한 CSFN-CMVN 방법을 제안하였다. 이 방법은 켑스트럼 특징의 분포 특성의 차이를 나타내는 켑스트럼 유클리디언 거리를 결합하여 음성/묵음 분류에 사용하여 묵음특징을 정규화하는 CSFN 방법에 켑스트럼 정규화 방법을 결합하는 방법이다. Aurora 2.0 DB를 이용한 실험결과, 제안한 CSFN-CMVN은 기존의 대표적인 묵음특징 정규화 방법인 SFN-I 과 비교했을 때 모든 테스트 세트에 대한 평균 단어인식 정확도에서 약 7%의 인식률 향상을 가져옴을 확인하였다. 또한, 기존의 SFN-II, CSFN에 비해서도 약 6%, 5% 향상되었음을 확인 할 수 있어 제안한 방법의 유효성을 확인할 수 있었다.

조타명령의 음성인식을 위한 최적 특징파라미터 검출에 관한 연구 (Optimal Feature Parameters Extraction for Speech Recognition of Ship's Wheel Orders)

  • 문성배;채양범;전승환
    • 해양환경안전학회지
    • /
    • 제13권2호
    • /
    • pp.161-167
    • /
    • 2007
  • 이 논문은 선박의 자동조타장치를 음성인식으로 제어할 수 있는 시스템을 개발하기 위한 기초연구로 SMCP(IMO Standard Marine Communication Phrases)에 제시된 조타명령문의 구성 형태를 분석하여 화자의 의도를 예측할 수 있는 특정 파라미터를 추출하였다. 그리고 이 파라미터를 이용하여 1차 패턴인식 과정으로부터 도출된 후보단어 집합으로부터 최종 단어를 결정하는 후처리 인식 프로시저를 설계하였다. 이 프로시저의 유용성을 검증하기 위하여 음성인식용으로 총 525개의 조타명령문을 획득하였고, 표준패턴 기반의 인식과정 인식률과의 비교실험을 수행하였다. 실험결과 의도예측 특정 파라미터를 이용한 인식 프로시저의 인식률이 약 42.3% 향상되어 유효함을 알 수 있었다.

  • PDF

Noise Elimination Using Improved MFCC and Gaussian Noise Deviation Estimation

  • Sang-Yeob, Oh
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.87-92
    • /
    • 2023
  • 음성 인식 시스템의 지속적인 발전으로 음성에 대한 인식율은 급속도로 발전되었지만 사용 환경에서의 잡음과 여러 음성이 혼합되어 발생하는 잡음으로 정확한 음성을 인식할 수 없는 단점을 가진다. 환경 잡음이 있는 음성을 처리할 때 음성 인식률을 높이기 위해서는 잡음을 제거해야 하며, 기존의 HMM, CHMM, GMM, 그리고 AI 모델이 적용된 DNN에서도 예상치 못한 잡음이 발생하거나 기본적으로 디지털 신호에 양자화 잡음이 추가되면 소스 신호가 변경되거나 손상되어 인식률이 저하된다. 이를 해결하기 위해 각 음성 프레임에 대한 음성 신호의 특징을 효율적으로 추출하기 위해 MFCC를 개선하여 처리하였으며, 음성 신호에 대한 잡음을 제거하기 위해 가우시안 모델을 적용한 잡음 편차 추정을 이용한 잡음 제거 방법을 개선하여 적용하였다. 제안된 모델에 대한 성능 평가는 음성에 대한 정확성 평가를 위해 교차 상관 계수를 사용하여 처리하였으며, 제안하는 방법의 인식률을 평가한 결과 이들에 대한 상관 계수에 대한 평균값 차이는 0.53 dB 개선된 것을 확인하였다.