• 제목/요약/키워드: Speech Confidence

검색결과 70건 처리시간 0.019초

음소기반 인식 네트워크에서의 단어 검출률을 이용한 문장거부 (Sentence Rejection using Word Spotting Ratio in the Phoneme-based Recognition Network)

  • 김형태;하진영
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 춘계 학술대회 발표논문집
    • /
    • pp.99-102
    • /
    • 2005
  • Research efforts have been made for out-of-vocabulary word rejection to improve the confidence of speech recognition systems. However, little attention has been paid to non-recognition sentence rejection. According to the appearance of pronunciation correction systems using speech recognition technology, it is needed to reject non-recognition sentences to provide users with more accurate and robust results. In this paper, we introduce standard phoneme based sentence rejection system with no need of special filler models. Instead we used word spotting ratio to determine whether input sentences would be accepted or rejected. Experimental results show that we can achieve comparable performance using only standard phoneme based recognition network in terms of the average of FRR and FAR.

  • PDF

소음문장 제거를 위한 음소지속시간 사용 (The Usage of Phoneme Duration Information for Rejecting Garbage Sentences)

  • 구명완;김호경;박성준;김재인
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.219-222
    • /
    • 2003
  • In this paper, we study the usage of phoneme duration information for rejection garbage sentence. First, we build a phoneme duration modeling in a speech recognition system based on dicicion tree state tying, We assume that phone duration has a Gamma distribution. Next, we build a verification module in which word-level confidence measure is used. Finally, we make a comparative study on phoneme duration with speech DB obtained from the live system. This DB consistes of OOT(out-of-task) and ING(in-grammar) utterences. the usage of phone duration information yields that OOT recognition rate is improved by 46% and that another 8.4% error rate is reduced when combined with utterence verification module.

  • PDF

Impostor Detection in Speaker Recognition Using Confusion-Based Confidence Measures

  • Kim, Kyu-Hong;Kim, Hoi-Rin;Hahn, Min-Soo
    • ETRI Journal
    • /
    • 제28권6호
    • /
    • pp.811-814
    • /
    • 2006
  • In this letter, we introduce confusion-based confidence measures for detecting an impostor in speaker recognition, which does not require an alternative hypothesis. Most traditional speaker verification methods are based on a hypothesis test, and their performance depends on the robustness of an alternative hypothesis. Compared with the conventional Gaussian mixture model-universal background model (GMM-UBM) scheme, our confusion-based measures show better performance in noise-corrupted speech. The additional computational requirements for our methods are negligible when used to detect or reject impostors.

  • PDF

한국어 음성인식 플랫폼 개발현황 (Status Report on the Korean Speech Recognition Platform)

  • 권오욱;권석봉;장규철;윤성락;김용래;장광동;김희린;유창동;김봉완;이용주
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.215-218
    • /
    • 2005
  • This paper reports the current status of development of the Korean speech recognition platform (ECHOS). We implement new modules including ETSI feature extraction, backward search with trigram, and utterance verification. The ETSI feature extraction module is implemented by converting the public software to an object-oriented program. We show that trigram language modeling in the backward search pass reduces the word error rate from 23.5% to 22% on a large vocabulary continuous speech recognition task. We confirm the utterance verification module by examining word graphs with confidence score.

  • PDF

휴대폰음성을 이용한 화자인증시스템에서 배경화자에 따른 성능변화에 관한 연구 (A Study on the Perlormance Variations of the Mobile Phone Speaker Verification System According to the Various Background Speaker Properties)

  • 최홍섭
    • 음성과학
    • /
    • 제12권3호
    • /
    • pp.105-114
    • /
    • 2005
  • It was verified that a speaker verification system improved its performances of EER by regularizing log likelihood ratio, using background speaker models. Recently the wireless mobile phones are becoming more dominant communication terminals than wired phones. So the need for building a speaker verification system on mobile phone is increasing abruptly. Therefore in this paper, we had some experiments to examine the performance of speaker verification based on mobile phone's voices. Especially we are focused on the performance variations in EER(Equal Error Rate) according to several background speaker's characteristics, such as selecting methods(MSC, MIX), number of background speakers, aging factor of speech database. For this, we constructed a speaker verification system that uses GMM(Gaussin Mixture Model) and found that the MIX method is generally superior to another method by about 1.0% EER. In aspect of number of background speakers, EER is decreasing in proportion to the background speakers populations. As the number is increasing as 6, 10 and 16, the EERs are recorded as 13.0%, 12.2%, and 11.6%. An unexpected results are happened in aging effects of the speech database on the performance. EERs are measured as 4%, 12% and 19% for each seasonally recorded databases from session 1 to session 3, respectively, where duration gap between sessions is set by 3 months. Although seasons speech database has 10 speakers and 10 sentences per each, which gives less statistical confidence to results, we confirmed that enrolled speaker models in speaker verification system should be regularly updated using the ongoing claimant's utterances.

  • PDF

강음절이 한국어 화자의 영어 연속 음성의 어휘 분절에 미치는 영향 (The Effect of Strong Syllables on Lexical Segmentation in English Continuous Speech by Korean Speakers)

  • 김선미;남기춘
    • 말소리와 음성과학
    • /
    • 제5권2호
    • /
    • pp.43-51
    • /
    • 2013
  • English native listeners have a tendency to treat strong syllables in a speech stream as the potential initial syllables of new words, since the majority of lexical words in English have a word-initial stress. The current study investigates whether Korean (L1) - English (L2) late bilinguals perceive strong syllables in English continuous speech as word onsets, as English native listeners do. In Experiment 1, word-spotting was slower when the word-initial syllable was strong, indicating that Korean listeners do not perceive strong syllables as word onsets. Experiment 2 was conducted in order to avoid any possibilities that the results of Experiment 1 may be due to the strong-initial targets themselves used in Experiment 1 being slower to recognize than the weak-initial targets. We employed the gating paradigm in Experiment 2, and measured the Isolation Point (IP, the point at which participants correctly identify a word without subsequently changing their minds) and the Recognition Point (RP, the point at which participants correctly identify the target with 85% or greater confidence) for the targets excised from the non-words in the two conditions of Experiment 1. Both the mean IPs and the mean RPs were significantly earlier for the strong-initial targets, which means that the results of Experiment 1 reflect the difficulty of segmentation when the initial syllable of words was strong. These results are consistent with Kim & Nam (2011), indicating that strong syllables are not perceived as word onsets for Korean listeners and interfere with lexical segmentation in English running speech.

가변어휘 단어 인식에서의 미등록어 거절 알고리즘 성능 비교 (Performance Comparison of Out-Of-Vocabulary Word Rejection Algorithms in Variable Vocabulary Word Recognition)

  • 김기태;문광식;김회린;이영직;정재호
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.27-34
    • /
    • 2001
  • 발화 검증이란 등록된 단어 목록 이외의 단어가 입력되었을 때, 미등록된 단어는 인식할 수 없는 단어임을 알려주는 기능으로써 사용자에게 친숙한 음성 인식 시스템을 설계하는데 중요한 기술이다. 본 논문에서는 가변어휘 단어 인식기에서 최소 검증 오류를 나타낼 수 있는 발화 검증 시스템의 알고리즘을 제안한다. 우선, 한국전자통신연구원의 PBW(Phonetically Balanced Words) 445DB를 이용하여 가변어휘 단어 인식에서의 미등록어 거절 성능을 향상시키는 효과적인 발화 검증 방법을 제안하였다. 구체적으로 특별한 훈련 과정이 없이도 유사 음소 집합을 많이 포함시킨 반음소 모델을 제안하여 최소 검증 오류를 지니도록 하였다. 또한, 음소 단위의 null hypothesis와 alternate hypothesis의 비를 이용한 음소 단위의 신뢰도는 null hypothesis로 정규화해서 강인한 발화 검증 성능을 보여 주었으며, 음소 단위의 신뢰도를 이용한 단어 단위의 신뢰도는 등록어와 미등록어 사이의 분별력을 잘 표현해 주었다. 이와 같이 새로이 제안된 반음소 모델과 발화 검증 방법을 사용했을 때, CA (Correctly Accept for Keyword: 등록어를 제대로 인정한 경우)는 약 89%, CR (Correctly Reject for OOV (Out-of-Vocabulary): 미등록어에 대해 거절한 경우)은 약 90%로써, 기존 필터 모델을 이용한 방법보다 미등록어 거절 성능이 ERR (Error Reduction Rate) 측면에서 약 15-21% 향상됨을 알 수 있었다.

  • PDF

Modified GMM Training for Inexact Observation and Its Application to Speaker Identification

  • Kim, Jin-Young;Min, So-Hee;Na, Seung-You;Choi, Hong-Sub;Choi, Seung-Ho
    • 음성과학
    • /
    • 제14권1호
    • /
    • pp.163-174
    • /
    • 2007
  • All observation has uncertainty due to noise or channel characteristics. This uncertainty should be counted in the modeling of observation. In this paper we propose a modified optimization object function of a GMM training considering inexact observation. The object function is modified by introducing the concept of observation confidence as a weighting factor of probabilities. The optimization of the proposed criterion is solved using a common EM algorithm. To verify the proposed method we apply it to the speaker recognition domain. The experimental results of text-independent speaker identification with VidTimit DB show that the error rate is reduced from 14.8% to 11.7% by the modified GMM training.

  • PDF

Tolerance Interval Analysis를 이용한 배경화자 없는 간단한 화자인증시스템에 관한 연구 (On the Simple Speaker Verification System Using Tolerance Interval Analysis Without Background Speaker Models)

  • 최홍섭
    • 대한음성학회지:말소리
    • /
    • 제56호
    • /
    • pp.147-158
    • /
    • 2005
  • In this paper, we are focused to develop the simplified speaker verification algorithm without background speaker models, which will be adopted in the portable speaker verification system equipped in portable terminals such as mobile phone and PMP. According to the tolerance interval analysis, the population of someone's speaker model can be represented by a suitable number of selected independent samples of speaker model. So we can make the representative speaker model and threshold under the specified confidence level and coverage. Using proposed algorithm with the number of samples is 40, the experiments show that the false rejection rate is $3.0\%$ and the false acceptance rate $4.3\%$, worth comparing to conventional method's results, $5.4\%\;and\;5.5\%$, respectively. Next step of research will be on the suitable adaptation methods to overcome speech variation problems due to aging effect and operating environments.

  • PDF

Active Learning과 군집화를 이용한 고정키어구 추출 (Keyphrase Extraction Using Active Learning and Clustering)

  • 이현우;차정원
    • 대한음성학회지:말소리
    • /
    • 제66호
    • /
    • pp.87-103
    • /
    • 2008
  • We describe a new active learning method in conditional random fields (CRFs) framework for keyphrase extraction. To save elaboration in annotation, we use diversity and representative measure. We select high diversity training candidates by sentence confidence value. We also select high representative candidates by clustering the part-of-speech patterns of contexts. In the experiments using dialog corpus, our method achieves 86.80% and saves 88% training corpus compared with those of supervised method. From the results of experiment, we can see that the proposed method shows improved performance over the previous methods. Additionally, the proposed method can be applied to other applications easily since its implementation is independent on applications.

  • PDF