• Title/Summary/Keyword: Spectrum of transmitter

Search Result 160, Processing Time 0.023 seconds

Improvement of Power Spectrum in Ultrashort Pulse Reflectometry Signals Using Three Chirp Configuration

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.51-56
    • /
    • 2014
  • The flat power spectrum of the transmitter output signal for the desired frequency range is ideal to achieve the best performance of ultrashort pulse reflectometry. However, the power spectrum of a typical pulse generator decreases significantly as frequency increases. A configuration of three chirped waveforms was employed to improve the power spectrum of the transmitter signal at higher frequencies. To determine the amplification gain required for higher frequency components, three chirped waveforms were theoretically generated and their power spectra were measured using numerical band-pass filters. Based on the results of numerical computations, the three chirp configuration was successfully applied to the design of the transmitter for a broadband system.

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.

Characteristics of AM and PM Signals in Multi-Carrier Polar Transmitter

  • Kang, Sanggee
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.45-51
    • /
    • 2021
  • Polar transmitter can support multi-band and multi-mode operation. The efficiency of frequency usage can be increased if polar transmitters can transmit multi-carrier signals. In this paper the configuration of polar transmitters is investigated to generate multi-carrier signals. Spectrum and CCDF Simulation results of two-carrier signals generated by the polar transmitter can be used to design of PM and AM path in a polar transmitter.

Direct Sequence Spread Spectrum Transmitter using FPGAs

  • Abhijit S. Pandya;Souza, Ralph-D′;Chae, Gyoo-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.76-79
    • /
    • 2004
  • The DS-SS (Direct Sequence Spread Spec1nun) transmitter is part of a low data rate (∼150 kbps - burst rate and 64 bps - average data rate) wireless communication system. It is traditionally implemented using Digital Signal processing chip (DSP). However, with rapid increase in variety of services through cell phones, such as, web access, video transfer, online games etc. demand for higher rate is increasing steadily. Since the chip rate and thereby the sampling rate requirements of the system are fairly high, the transmitter should implemented using Field programmable Gate Arrays FPGAs instead of a DSP. This paper shows the steps taken to get a working prototype of the transmitter unit on a FPGA based platform.

Performance of Battery-less Backscatter Sensor Networks Based on Good Channel Sensing (채널 센싱 기반의 무전원 백스케터 센서 네트워크의 성능)

  • Hong, Seung Gwan;Sim, Isaac;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • In this paper, we studied a spectrum sensing algorithm for the efficient use of available spectrum in RF energy harvesting system combined with backscatter communication. We first looked for white spaces and then, selected low fading channel among white spaces using spectrum sensing algorithm at a transmitter. The transmitter employing the algorithm alleviates signal interference and improves the received signal strength indication through signals transmitted by low fading channel. The proposed RF energy harvesting system combined with backscatter communication is used the transmitter employing the algorithm. As a result of computer simulations, we can find the performance improvements of RF energy harvesting, BER of backscatter communication, and the received signal strength per distance of backscatter tag.

Receiver-Centric Spectrum Sensing for Cognitive Radio Systems (무선인지 시스템을 위한 수신기 중심 스펙트럼 센싱 기술)

  • Shin, Oh-Soon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.43-48
    • /
    • 2011
  • Cognitive radio is accepted as an effective and promising approach for resolving the spectrum scarcity problem by allowing secondary users to borrow unused spectrum from primary users. A method of identifying busy and empty spectrum at the given time and space, which is called spectrum sensing, constitutes an essential element of the cognitive radio. In this paper, we propose a receiver-centric spectrum sensing scheme which attempts to detect the primary receiver rather than the primary transmitter. It is shown that the proposed receiver-centric sensing approach results in more efficient spectrum utilization than the conventional transmitter-centric sensing.

On the Capacities of Spectrum-Sharing Systems with Transmit Diversity

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Motivated by recent works on spectrum-sharing systems, this paper investigates the effects of transmit diversity on the peak interference power limited cognitive radio(CR) networks. In particular, we derive the ergodic and outage capacities of a spectrum-sharing system with multiple transmit-antennas. To derive the capacities, peak interference power constraint is imposed to protect the primary receiver. In a CR transmitter and receiver pair with multiple antennas at the transmitter side, the allowable transmit power is distributed over the transmit-antennas to achieve transmit diversity at the receiver. We investigate the effect of this power distribution when a peak interference power constraint is imposed to protect the primary receiver. We show that the transmit diversity does not improve the ergodic capacity compared to the single-antenna system. On the other hand, the transmit diversity significantly improves the outage capacity. For example, two transmit-antennas improve the outage capacity 10 times compared to the single-antenna with a 0 dB interference constraint.

Implementation of Spectrum Sensing with Video Transmission for Cognitive Radio using USRP with GNU Radio

  • Thien, Huynh Thanh;Vu-Van, Hiep;Koo, Insoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • In cognitive radio (CR), secondary users (SUs) are able to sense the absence of primary users (PUs) in the spectrum. Then, SUs use this information to opportunistically access the licensed spectrum in the PUs' absence. In this paper, we present an implementation of real-time video transmission with spectrum-sensing between two points using GNU Radio and a National Instruments 2900 Universal Software Radio Peripheral (USRP). In our project, spectrum-sensing is implemented at both transmitter and receiver. The transmitter senses the channel, and if the channel is free, a video signal (which could be a real-time signal from a video file) will be modulated and processed by GNU Radio and transmitted using a USRP. A USRP receiver also senses the channel, but in contrast, if the channel is busy, the signal is demodulated to reproduce the transmitted video signal. This project brings in several challenges, like spectrum-sensing in the devices' environment, and packets getting lost or corrupted over the air.

Spectrum Analysis of UWB Radar Transmitter for Short Range Automobile Applications (단거리 차량용 초광대역 레이더 송신기의 스펙트럼 분석)

  • Ko, Seok J.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, we propose structures and power spectral densities of UWB radar transmitters of Short Range Automobile. While the conventional transmitters did not consider interferences from self and other automobiles, the proposed method of this paper can minimize interferences. First, we compare a structure of the proposed method with pulse train and pulse compression method. Then, by using mathematical analysis and computer simulations, we show that the proposed method is superior to others. Also we can set proper parameters in UWB radar's transmitter through the numerical method of mathematical results.

The Characteristics of Terahertz Electromagnetic Pulses by Different Bias Voltage (전압 변화에 따른 테라헤르츠 전자기 펄스의 변화 특성)

  • 전태인;김근주
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.479-482
    • /
    • 2001
  • We have measured terahertz electromagnetic pulses when DC voltage from V up to 90V is applied to the transmitter chip excited by femto-second laser pulse. The femto-second excitation laser pulse was injected to transmitter chip. Finally, we are observed the amplitude of electromagnetic pulse and variation of spectrum. Consequently, the amplitude of spectrum was increased to high frequency according to increase of voltage. At that time, the signal-to-noise rate(SNR) is increased from 250:1 to 10, 000:1.

  • PDF