• Title/Summary/Keyword: Spectrum inspection system

Search Result 37, Processing Time 0.029 seconds

A Development of Real-time Vibration Monitoring and Analysis System Linked to the Integrated Management System of Ministry of Public Safety and Security (국민안전처 통합관리시스템 연계 가능한 시설물 진동 감지 및 분석 시스템 개발)

  • Lim, Ji-Hoon;Jung, Jin-Woo;Moon, Dae-Joong;Choi, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.130-139
    • /
    • 2016
  • A frequency of earthquake occurrence in the Republic of Korea is increasing over the past few decades. In this situation, an importance of earthquake prevention comes to the fore because the earthquake does damage to structures and causes severe damage of human life. For the earthquake prevention, a real-time vibration measurement for structures is important. As an example, the United States of America and Japan have already been monitoring real-time earthquake acceleration for the important structures and the measured acceleration data has been managed by forming database. This database could be used for revising the seismic design specifications or predicting the damage caused by earthquake. In Korea, Earthquake Recovery Plans Act and Enforcement Regulations are revised and declared lately. Ministry of Public Safety and Security is constructing a integrated management system for the measured earthquake acceleration data. The purpose of this research is to develop a real-time vibration monitoring and analysis system for structures which links to the integrated management system. The developed system contains not only a monitoring function to show real-time acceleration data but also an analysis system to perform fast fourier transform, to obtain natural frequency and earthquake magnitude, to show response spectrum and power spectrum, and to evaluate structural health. Additionally, this system is designed to be able to link to the integrated management system of Ministry of Public Safety and Security. It is concluded that the developed system can be useful to build a safety management network, minimize maintenance cost of structures, and prevention of the structural damage due to earthquake.

Development of Pre-Service and In-Service Information Management System (iSIMS) (원전 가동전/중 검사정보관리 시스템 개발)

  • Yoo, H.J.;Choi, S.N.;Kim, H.N.;Kim, Y.H.;Yang, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.390-395
    • /
    • 2004
  • The iSTMS is a web-based integrated information system supporting Pre-Service and In-Service Inspection(PSI/ISI) processes for the nuclear power plants of KHNP(Korea Hydro & Nuclear Power Co. Ltd.). The system provides a full spectrum coverage of the inspection processes from the planning stage to the final report of examination in accordance with applicable codes, standards, and regulatory requirements. The major functions of the system includes the inspection planning, examination, reporting, project control and status reporting, resource management as well as objects search and navigation. The system also provides two dimensional or three dimensional visualization interface to identify the location and geometry of components and weld areas subject to examination in collaboration with database applications. The iSIMS is implemented with commercial software packages such as database management system, 2-D and 3-D visualization tool, etc., which provide open, updated and verified foundations. This paper describes the key functions and the technologies for the implementation of the iSIMS.

A Study on the Measurement of Foreign Material in Dissimilar Metal Contact Using Pulse Laser and Confocal Fabry-Perot Interferometer (펄스 레이저와 CFPI를 이용한 이종금속 접촉부의 이물질 측정에 관한 연구)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.160-164
    • /
    • 2013
  • A laser ultrasonic inspection system is a non-contact inspection device which generates and measures ultrasonics by using laser beam. A laser ultrasonic inspection system provides a high measurement resolution because the ultrasonic signal generated by a pulse laser beam has a wide-band spectrum and the ultrasonic signal is measured from a small focused spot of a measuring laser beam. In this study, galvanic corrosion phenomenon was measured by non-destructive and non-contact method using the laser. The case of mixed foreign material on the part of corrosion was assumed and laser ultrasonic experiment was conducted. Ultrasonic was generated by pulse laser from the back side of the specimen and ultrasonic signal was acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer(CFPI). The characteristic of the ultrasonic signal of exist foreign material part was analyzed and the location and size of foreign material was measured.

A Study on Defect Diagnosis of Rotating Machinery Using Neural Network (신경회로망을 이용한 회전기계의 고장진단에 관한 연구)

  • Choe, Won-Ho;Yang, Bo-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.144-150
    • /
    • 1992
  • This paper describes an application of artificial neural network to diagnose the defects of rotating machiner. Induction motor was used to the object of defect diagnosis. For defect diagnosis, the frequency spectrum of vibration was utilized. Learning method of applied neural network was back propagation. Neural network has following advantage; Once it has been learned, inference time is very short and it can provide a reasonable conclusion regardless of insufficient input data. So, this defect diagnosis system can be used superiorly to rule based expert system as quality inspection of rotating machinery in the shop.

  • PDF

Variation and Sex-limited Expression of Fluorescent Color by Ultraviolet Spectrum on the Silkworm Cocoon (누에고치의 분광성에 관한 계통별 변이 및 한성적 발현)

  • 한명세
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.1
    • /
    • pp.22-29
    • /
    • 1997
  • Ultraviolet weavelength (UV) of 366 nm produced clearer fluorescent dolor than that of 254 nm for the inspection of silkworm cocoons. Fluorescent color of silkworm cocoons varied in color, appears no relationship with the natural color under the normal light. Uniformity of fluorescent color was improved by selection of blue or yellow line from wild types. Blue and yellow, located at the opposite poles on the color solid and L*a*b* color system, confirmed as pure standard of fluorescent color in the silkworm races for commercial white cocoons. the cocoons with blue fluorescence occupied as high as 1.7 to 8.6 times than those with yellow in the Japanese silkworm races. Fluorescence of silkworm cocoon was not affected by forced flow dry at 70$^{\circ}C$ for 6 hrs. While the Japanese races revealed no sexual difference in fluorescent color, sex-dependence of the color was common in the Chinese races for commercial white cocoon. The fluorescence of cocoon shell of Chinese races showed clear separation of blue of median color. Silkworm strain of Dc20 and Fc24 were sexualy segregated 98.8${\pm}$1.20%, 99.0${\pm}$1.00% by cocoon fluorescence, as that of 99.3${\pm}$0.44% by typical larval marking of sex-limited inheritance. Specific expression of cocoon fluorescence, applicable to breeding of simple discrimination of sex for Chinese races, inspected thoroughly on the surface and inner layer of cocoon shell.

  • PDF

Study of Integrated Optimal Design of Smart Top-Story Isolation and Building Structures in Regions of Low-to-Moderate Seismicity (중약진지역 구조물과 스마트 최상층 면진시스템의 통합최적설계에 대한 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2013
  • In order to reduce seismic responses of a structure, additional dampers and vibration control devices are generally considered. Usually, control performance of additional devices are investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a building structure with smart top-story isolation system has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions. The integrated optimal design method proposed in this study can provide various optimal designs that presents good control performance by appropriately reducing the amount of structural material and damping device.

Dynamic Characteristic of the Seismic Performance of Uninterruptible Power Supply with Combined Isolator Using Shaking Table Test (복합면진장치를 적용한 무정전전원장치의 1축 진동대실험 기반 동적특성 분석)

  • Lee, Ji-Eon;Lee, Seung-Jae;Park, Won-Il;Choi, Kyoung-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • In this study, three types of combined isolator consisting of High Damping Rubber Bearing (HDRB) and wire isolator were developed for Uninterruptible Power Supply system (UPS). The dynamic characteristics of the combined isolator were investigated through one-axis shaking table test. The input acceleration were generated in accordance with ICC-ES AC156 code. Scale factors of the input acceleration were designed to be 0.5-2 times the required response spectrum defined in ICC-ES AC156. Based on the test results, damage and dynamic characteristics of the UPS were investigated: including natural frequency, damping ratio, acceleration time history response, dynamic amplification factor and relative displacement. Based on that, it was found that the combined isolator developed in this study could improve the seismic behavior of the UPS, in particular, the response acceleration.

Determination of High-pass Filter Frequency with Deep Learning for Ground Motion (딥러닝 기반 지반운동을 위한 하이패스 필터 주파수 결정 기법)

  • Lee, Jin Koo;Seo, JeongBeom;Jeon, SeungJin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.183-191
    • /
    • 2024
  • Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.

Ultrasonic Flaw Detection in Composite Materials Using SSP-MPSD Algorithm

  • Benammar, Abdessalem;Drai, Redouane
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1753-1761
    • /
    • 2014
  • Due to the inherent inhomogeneous and anisotropy nature of the composite materials, the detection of internal defects in these materials with non-destructive techniques is an important requirement both for quality checks during the production phase and in service inspection during maintenance operations. The estimation of the time-of-arrival (TOA) and/or time-of-flight (TOF) of the ultrasonic echoes is essential in ultrasonic non-destructive testing (NDT). In this paper, we used split-spectrum processing (SSP) combined with matching pursuit signal decomposition (MPSD) to develop a dedicated ultrasonic detection system. SSP algorithm is used for Signal-to-Noise Ratio (SNR) enhancement, and the MPSD algorithm is used to decompose backscattered signals into a linear expansion of chirplet echoes and estimate the chirplet parameters. Therefore, the combination of SSP and MPSD (SSP-MPSD) presents a powerful technique for ultrasonic NDT. The SSP algorithm is achieved by using Gaussian band pass filters. Then, MPSD algorithm uses the Maximum Likelihood Estimation. The good performance of the proposed method is experimentally verified using ultrasonic traces acquired from three specimens of carbon fibre reinforced polymer multi-layered composite materials (CFRP).

Texture Analysis Algorithm and its Application to Leather Automatic Classification Inspection System (텍스처 분석 알고리즘과 피혁 자동 선별 시스템에의 응용)

  • 김명재;이명수;권장우;김광섭;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.363-366
    • /
    • 2001
  • The present process of grading leather quality by the rare eyes is not reliable. Because inconsistency of grading due to eyes strain for long time can cause incorrect result of grading. Therefore it is necessary to automate the process of grading quality of leather based on objective standard for it. In this paper, leather automatic classification system consists of the process obtaining the information of leather and the process grading the quality of leather from the information. Leather is graded by its information such as texture density, types and distribution of defects. This paper proposes the algorithm which sorts out leather information like texture density and defects from the gray-level images obtained by digital camera. The density information is sorted out by the distribution value of Fourier spectrum which comes out after original image is converted to the image in frequency domain. And the defect information is obtained by the statistics of pixels which is relevant to Window using searching Window after sort out boundary lines from preprocessed images. The information for entire leather is used as standard of grading leather quality, and the proposed algorithm is practically applied to machine vision system.

  • PDF