• Title/Summary/Keyword: Spectrum Estimation

Search Result 532, Processing Time 0.024 seconds

Far-ultraviolet study of the local supershell GSH 006-15+7

  • Jo, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.81.2-81.2
    • /
    • 2014
  • We have analyzed the archival data of far ultraviolet (FUV) observations made for the region of GSH 006-15+7, a large shell-like structure discovered by Moss et al. (2012) from the H I velocity maps. FUV emission is seen enhanced in the lower supershell region and is believed to originate from dust scattering of interstellar photons. A corresponding Monte Carlo simulation indicates that the supershell is located at a distance of $1250^{+750}{_{-500}}$ pc, similar to the previous estimation of 1.5{\pm}0.5 kpc based on kinematic considerations. The spectrum obtained for the lower supershell exhibits molecular hydrogen fluorescence lines: a simulation model for this candidate photodissociation region (PDR) yields a rather high total hydrogen density of $n_H{\sim}30cm^{-3}$ with H2 column density of $N(H_2){=}^{1017.5-20.0}cm^{-2}$. It is argued that the region is in a transition stage from a warm to a cool neutral phase. Strong C IV emission is also seen in the spectrum, but it is not believed to be associated with the supershell as the corresponding spectral map shows a broad region of enhancement both inside and outside the supershell.

  • PDF

Micro-seismic monitoring in mines based on cross wavelet transform

  • Huang, Linqi;Hao, Hong;Li, Xibing;Li, Jun
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1143-1164
    • /
    • 2016
  • Time Delay of Arrival (TDOA) estimation methods based on correlation function analysis play an important role in the micro-seismic event monitoring. It makes full use of the similarity in the recorded signals that are from the same source. However, those methods are subjected to the noise effect, particularly when the global similarity of the signals is low. This paper proposes a new approach for micro-seismic monitoring based on cross wavelet transform. The cross wavelet transform is utilized to analyse the measured signals under micro-seismic events, and the cross wavelet power spectrum is used to measure the similarity of two signals in a multi-scale dimension and subsequently identify TDOA. The offset time instant associated with the maximum cross wavelet transform spectrum power is identified as TDOA, and then the location of micro-seismic event can be identified. Individual and statistical identification tests are performed with measurement data from an in-field mine. Experimental studies demonstrate that the proposed approach significantly improves the robustness and accuracy of micro-seismic source locating in mines compared to several existing methods, such as the cross-correlation, multi-correlation, STA/LTA and Kurtosis methods.

A Study for Beamforming Acoustic Holographic Method Using Linear Arrayed Microphones (직선 배열형 마이크로폰 어레이를 이용한 빔포밍 음향홀로그래픽법에 관한 연구)

  • Kim, Chun-Duck;Sim, Dong-Youn;Jang, Bee;Cha, Kyung-Hwan;Lee, Chai-Bong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.3-10
    • /
    • 2000
  • This paper proposes acoustic holographic measuring system to estimate an absolute position of sound source. Using the measured signals, the estimation of the position is calculated by the Cross-spectrum algorithm of the beamformed signal and a linear arrayed microphone's signals. As the results of comparing the reference microphone method with beamforming method through the measurement of sound field, the beamforming acoustic holographic method is progressed above 20 percent than that of a reference microphone method in the resolution, and the utility of the proposed system could be confirmed.

  • PDF

Estimation on the Performance of CB Scheme in Cellular System with Radio Interference (전파간섭이 존재하는 셀룰러 시스템에서의 CB 기법의 성능 평가)

  • 이성수;김종호;박상준;강영훙;이정식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.156-160
    • /
    • 2002
  • In this paper, we have estimated by means of the theoretical analysis and the simulation of FCA(Fixed Channel Assignment) and CB(Channel Borrowing) in order to consider the CB as a technique to meet ducting interference from adjacent countries. Also, we assumed that the receiving power level of ducting interference with time rate can be characterized by the normal distribution due to the previous measured results, and the ducting interferences which are exceeding the reference power level can be regarded as calls. These calls can be processed by CR assignment and by which sharing channels between cells brings to us the method of meeting the ducting interference to use spectrum resources effectively. However, the spectrum frequency reusing and the interference effects between channels should be considered in CB simulation in the future.

  • PDF

Power Spectrum Estimation on the Signals with Low Frequency (저주파진동 해석을 위한 데이터처리기법 연구)

  • 천영수;조남규;이리형
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.185-193
    • /
    • 1997
  • A major problem of frequency analysis in the field of low-frequencies such as building or construction vibration is the way of signal processing which is appropriate to obtain included frequency content from the finite process to be measured. Therefore, it is the aim of the investigation reported herein to develop the signal processing algorithm which is analyzed without losing the reliability of the measurements in low-frequency domain. To accomplish the research objective, it was analyzed the problems on the way of signal processing in low-frequency domain, and compared the response characteristics of FFT with those of MEM (Maximum Entropy Method) about the low-frequency of vibration. This evaluation of the response characteristics is used in determining appropriate signal processing algorithm into the low-frequency domain.

  • PDF

Design of the dual-buoy wave energy converter based on actual wave data of East Sea

  • Kim, Jeongrok;Kweon, Hyuck-Min;Jeong, Weon-Mu;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.739-749
    • /
    • 2015
  • A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: $36.404N^{\circ}$ and $129.274E^{\circ}$) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

A Study on Poly-pulse Pair Estimation Method for Reduction of Bias Errors in a Weather Radar (기상레이다에서의 편향오차 감소를 위한 다중 펄스페어 추정기법에 관한 연구)

  • 이종길
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2292-2297
    • /
    • 1999
  • Some observed weather spectra show that nearly 25% of weather spectra are seriously skewed and can not be considered to be symmetric. However, the conventional pulse pair method was derived and has been evaluated under the assumption that the weather spectrum is symmetric and narrow. This means that the conventional pulse pair method may need reevaluation. Therefore, this paper analyzed the bias errors of pulse pair estimates in the skewed spectra. The bias errors of pulse pair mean estimates are more serious comparing with the pulse pair width estimates. In this paper, the poly-pulse pair method is suggested to reduce these bias errors of mean estimates. It was shown that the mean bias errors can be reduced remarkably using the newly suggested poly-pulse pair method.

  • PDF

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

Fatigue Damage Estimation of Wide Band Spectrum Considering Various Artificial Neural Networks (다양한 인공 신경망을 적용한 광대역 스펙트럼의 피로손상 예측)

  • Park, Jun-Bum;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.341-348
    • /
    • 2016
  • The fatigue damage caused by wide band loadings has generally been predicted using fatigue damage models in the frequency domain rather than a rain-flow counting method in the time domain because of its computation cost. This study showed that these fatigue damage models can be simplified in the form of normalized fatigue damage as a function of the S-N curve slope and bandwidth parameters. Based on numerical simulations of various wide band spectra, it was found that fatigue damage models in the form of normalized fatigue damage with one S-N curve slope and two bandwidth parameters( α1 , α2 ) provided less reasonable fatigue damage. Therefore, an additional bandwidth parameter needs to be considered based on a sensitivity study using various neural networks, which proved that α1-5 would be the dominant factor of a fatigue damage model as an additional bandwidth parameter.

Seismic responses of hyperbolic cooling towers under horizontal and vertical earthquake

  • Zhang, Jun-Feng;Wang, Yuan-Hao;Li, Jie;Zhao, Lin
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.405-415
    • /
    • 2021
  • Following the dynamic property analysis and elaboration, linear response spectrum analysis (RSA) and response history analysis (RHA) were conducted on a representative hyperbolic cooling towers (HCT) in present study. The seismic responses in tower shell were illustrated in detail, including the internal force amplitude, modal contribution, influence from damping ratio, comparison of results got from RSA and RHA and especially the latitude distributions of internal forces. The results show that the eigenmodes could be classified in a new method into four types according to their mode shapes and only the lateral bending modes and vertical stretching modes are meaningful for horizontal and vertical earthquake correspondingly. The bending modes and seismic deformation display the same feature which is global lateral bending accompanied by minute circular flow displacement of section. This feature also decides the latitude distributions of internal forces as sine or cosine. Moreover, the following method is also proposed for approximate estimation of internal force amplitudes without time-consuming response history analysis: getting the response spectrums of the selected ground accelerations and then comparing values of response spectrums at the natural period of first lateral bending mode because it is always prime dominant for horizontal seismic responses.