• 제목/요약/키워드: Spectral shift

검색결과 193건 처리시간 0.027초

Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity

  • Isarankura-Na-Ayudhya, Chartchalerm;Tansila, Natta;Worachartcheewan, Apilak;Bulow, Leif;Prachayasittikul, Virapong
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.532-541
    • /
    • 2010
  • Peroxidase-like activity of Vitreoscilla hemoglobin (VHb) has been recently disclosed. To maximize such activity, two catalytically conserved residues (histidine and arginine) found in the distal pocket of peroxidases have successfully been introduced into that of the VHb. A 15-fold increase in catalytic constant ($k_{cat}$) was obtained in P54R variant,which was presumably attributable to the lower rigidity and higher hydrophilicity of the distal cavity arising from substitution of proline to arginine. None of the modifications altered the affinity towards either $H_2O_2$ or ABTS substrate. Spectroscopic studies revealed that VHb variants harboring the T29H mutation apparently demonstrated a spectral shift in both ferric and ferrous forms (406-408 to 411 nm, and 432 to 424-425 nm, respectively). All VHb proteins in the ferrous state had a $\lambda_{soret}$ peak at ~419 nm following the carbon monoxide (CO) binding. Expression of the P54R mutant mediated the downregulation of iron superoxide dismutase (FeSOD) as identified by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting (PMF). According to the high peroxidase activity of P54R, it could effectively eliminate autoxidation-derived $H_2O_2$, which is a cause of heme degradation and iron release. This decreased the iron availability and consequently reduced the formation of the $Fe^{2+}$-ferric uptake regulator protein ($Fe^{2+}$-Fur), an inducer of FeSOD expression.

Evaluation of MALDI Biotyping for Rapid Subspecies Identification of Carbapenemase-Producing Bacteria via Protein Profiling

  • Somboro, Anou M.;Tiwari, Dileep;Shobo, Adeola;Bester, Linda A.;Kruger, Hendrik G.;Govender, Thavendran;Essack, Sabiha Y.
    • Mass Spectrometry Letters
    • /
    • 제5권4호
    • /
    • pp.110-114
    • /
    • 2014
  • The method of direct mass spectrometry profiling is reliable and reproducible for the rapid identification of clinical isolates of bacteria and fungi. This is the first study evaluating the approach of MALDI-TOF mass spectrometry profiling for rapid identification of carbapenemase-resistant enterobacteriaceae (CRE). Proof of concept was achieved by the discrimination of CRE using MALDI Biotyper MS based on the protein. This profiling appears promising by the visual observation of consistent unique peaks, albeit low intensity, that could be picked up from the mean spectra (MSP) method. The Biotyper MSP creation and identification methods needed to be optimized to provide significantly improved differences in scores to allow for subspecies identification with and without carbapenemases. These spectra were subjected to visual peak picking and in all cases; there were pertinent differences in the presence or absence of potential biomarker peaks to differentiate isolates. We also evaluated this method for potential discrimination between different carbapenemases bacteria, utilizing the same strategy. Based on our data and pending further investigation in other CREs, MALDI-TOF MS has potential as a diagnostic tool for the rapid identification of even closely related carbapenemases but would require a paradigm shift in which Biotyper suppliers enable more flexible software control of mass spectral profiling methods.

이동통신 Nakagami 페이딩 채널에서 채널코딩과 최대비합성 다이버시티 기법에 의한 Hybrid DS / SFH-CDMA 비동기 MFSK 신호의 성능평가 (Performance Evaluation of Hybrid DS/SFH-CDMA Noncoherent MFSK Signal with Channel Coding and MRC Diversity Techniques in Mobile Communication Nakagami Fading Channels)

  • 강희조
    • 한국전자파학회논문지
    • /
    • 제8권4호
    • /
    • pp.342-353
    • /
    • 1997
  • 본 논문에서는 Nakagami 페이딩 채널환경에서 하이브리드 DS /SFH-CDMA 비동기 M-ary FSK 시스템의 성능을 분석하여 평가하였다. 다중경로 간섭과 다중접속 간섭을 고려하였고, 스펙트럼 효율은 부호화 하였을 때의 시스템과 부호화 하지 않았을 때의 시스템을 계산하였다. 검파 전 MRC 다이버시티 기법과 인터리브 채널코 딩기법(해밍(7,4), BCH(15, 7), RS(7, 4), (15,9))을 함께 적용하여 비트에러율의 성능을 개선시켰다. 비동기 하이브리드 시스템의 비트오율은 가우시안 간섭의 근사값을 사용하여 얻었다. 결과들로부터, 페이딩의 영향이 크면 클수록 시스템의 성능이 열화되며, 직접확산 부분의 변조는 다중경로 간섭에, 주파수 호핑 부분의 변조는 다중접속간섭의 영향에 민감함을 알 수 있었다. 이것들의 결과로부터 채널코딩기법과 검파 전 다이버시티 기법을 함께 사용하므로써 만족할만한 성능을 얻을 수 있었다.

  • PDF

콜로이드 합성법에 의한 HgTe 양자점의 제조와 특성 분석 (Colloidal synthesis of IR-Iuminescent HgTe quantum dots)

  • 송현우;조경아;김현석;김상식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.31-34
    • /
    • 2002
  • HgTe quantum dots were synthesized in aqueous solution at room temperature by colloidal method. The synthesized materials were identified to be zincblende cubic structured HgTe quantum dots by X-ray diffraction and transmission electron microscopy image revealed that these quantum dots are agglomerate of a individual particle. The colloidally prepared HgTe quantum dots have the sphere-like shape with a diameter of approximately 4 nm. The optical properties of the HgTe quantum dots were investigated with photoluminescence(PL). The PL appears in the near-infrared region, which represent a dramatic shift from bulk HgTe behavior. The analytic results revealed that HgTe quantum dots have the broad size distribution, as PL emission spectrum covers the spectral region from 900 to 1400 nm. In this study, the factors affecting PL of HgTe quantum dots and particle size distributiont are described.會Ā᐀䁇?⨀젲岒Ā㰀會Ā㰀顇?⨀끩Ā㈀會Ā㈀?⨀䡪ఀĀ᐀會Ā᐀䡈?⨀Ā᐀會Ā᐀ꁈ?⨀硫ᜀĀ저會Ā저?⨀샟ගऀĀ저會Ā저偉?⨀栰岒ఀĀ저會Ā저ꡉ?⨀1岒Ā저會Ā저J?⨀惝ග؀Ā؀會Ā؀塊?⨀ග嘀Ā切會Ā切끊?⨀⣟ගĀ搀會Ā搀ࡋ?⨀큭킢Ā저會Ā저恋?⨀桮킢Ā저會Ā저롋?⨀⣅沥ࠀĀࠀ會Āࠀ၌?⨀샅沥Ā저會Ā저桌?⨀壆沥ሀĀ저會Ā저쁌?⨀o킢瀀ꀏ會Āᡍ?⨀棤좗ĀĀĀ會ĀĀ灍?⨀å좗ĀĀĀ會ĀĀ졍?⨀飥좗ĀĀĀ會ĀĀ⁎?⨀?ꆟᤀ

  • PDF

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.

Semiconductor CdTe-Doped CdO Thin Films: Impact of Hydrogenation on the Optoelectronic Properties

  • Dakhel, Aqeel Aziz;Jaafar, Adnan
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Doping or incorporation with exotic elements are two manners to regulate the optoelectronic properties of transparent conducting (TCO) cadmium oxide (CdO). Nevertheless, the method of doping host CdO by CdTe semiconductor is of high importance. The structural, optical, and electrical properties of CdTe-doped CdO films are studied for the sake of promoting their conducting parameters (CPs), including their conductivity, carrier concentration, and carrier mobility, along with transparency in the NIR spectral region; these are then compared with the influence of doping the host CdO by pure Te ions. X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and electrical measurements are used to characterise the deposited films prepared by thermal evaporation. Numerous results are presented and discussed in this work; among these results, the optical properties are studied through a merging of concurrent BGN (redshift) and BGW (blue shift) effects as a consequence of doping processes. The impact of hydrogenation on the characterisations of the prepared films is investigated; it has no qualitative effect on the crystalline structure. However, it is found that TCO-CPs are improved by the process of CdTe doping followed by hydrogenation. The utmost TCO-CP improvements are found with host CdO film including ~ 1 %Te, in which the resistivity decreases by ~ 750 %, carrier concentration increases by 355 %, and mobility increases by ~ 90 % due to the increase of Ncarr. The improvement of TCO-CPs by hydrogenation is attributed to the creation of O-vacancies because of H2 molecule dissociation in the presence of Te ions. These results reflect the potential of using semiconductor CdTe -doped CdO thin films in TCO applications. Nevertheless, improvements of the host CdO CPs with CdTe dopant are of a lesser degree compared with the case of doping the host CdO with pure Te ions.

입사광각의 영향을 최소화한 다결정 주기 구멍 배열 플라즈모닉 컬러 필터의 설계 (Polyperiodic-hole-array Plasmonic Color Filter for Minimizing the Effect of Angle of Incidence)

  • 정기원;도윤선
    • 한국광학회지
    • /
    • 제31권3호
    • /
    • pp.148-154
    • /
    • 2020
  • 본 논문에서는 주기적인 구멍배열(periodic hole array, PHA) 패턴을 가진 나노금속구조 컬러필터의 문제점인 입사광의 각도에 따른 컬러필터 중심파장의 이동을 해결하기 위해 새로운 구멍 패턴인 polyperiodic hole array (PPHA)를 제시한다. 먼저 녹색파장대역 컬러필터를 만들기 위해 구멍의 직경과 주기를 정했으며 propagation length와 skin depth를 고려해 단위셀의 크기, 금속과 유전체의 두께를 설정했다. PPHA 패턴을 만들기 위해 주기적인 구멍배열을 국부적으로 회전시켜 전체적으로는 비주기적이지만 부분적으로 주기적인 패턴을 만들었다. 그 결과 PHA 패턴과 대비하여 PPHA 패턴 나노금속구조 컬러필터는 입사광각이 0°에서 30°까지 증가하였을 때 파장의 이동도가 최대 40% 개선되었다. 본 연구를 통해 나노금속구조 컬러필터의 성능을 향상시킬 수 있으며 디스플레이, 이미지 센서 등 이미징 디바이스 분야에 접목시켜 산업적으로 활용할 수 있을 것으로 예상한다.

Temperature Dependent Terahertz Generation at Periodically Poled Stoichiometric Lithium Tantalate Crystal Using Femtosecond Laser Pulses

  • Yu, N.E.;Kang, C.;Yoo, H.K.;Jung, C.;Lee, Y.L.;Kee, C.S.;Ko, D.K.;Lee, J.
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.200-204
    • /
    • 2008
  • Coherent tunable terahertz generation was demonstrated in periodically poled stoichiometric lithium tantalate crystal via difference frequency generation of femtosecond laser pulses. Simultaneous forward and backward terahertz radiations were obtained around 1.35 and 0.63 THz, respectively at low temperature. By cooling the crystal to reduce losses caused by phonon absorptions, the generated THz bandwidth was as narrow as 23GHz at the center frequency of 0.63 THz. The measurement result of temperature-dependent showed gradual intensity increase of the generated terahertz pulse and red shift of the center frequency as the temperature decrease from 291 to 143 K, but insignificant reduction of the spectral bandwidth. Furthermore, the stoichiometric crystal was very suitable for the suppression of THz loss at low temperature compared to the congruent $LiNbO_3$ crystal.

다중양자우물의 상호 섞임 현상을 이용한 다중파장검출기의 제작 (Fabrication of Wavelength Division Demultiplexing Photodetectors Using Quantum Well Intermixing)

  • 여덕호;윤경훈;김성준
    • 대한전자공학회논문지SD
    • /
    • 제37권9호
    • /
    • pp.1-6
    • /
    • 2000
  • InGAAs/InGaAsP 다중양자우물구조에 분순물없는 vacancy 확산으로 지역 선택적인 상호 섞임 현상을 유도하고, 다중 파장 검출이 가능한 집적 광도파로형 photodetector를 제작 및 측정하였다. 다중양자우물구조는 상호섞임에 의해서 밴드갭이 크게 청색편이 하였다. 집적 광수신소자는 p-i-n 구조이며, 밴드갭이 큰 영역과 작은 영역이 광도파로를 따라 일렬이 되도록 항ㅆ다. 광도파로의 폭은 20 ${\mu}m$이며, 각 광수신소자에 길이는 250 ${\mu}m$이다. Tunable 레이저와 편광기를 이용하여, TE/TM 편광된 빛을 광수신소자에 butt-coupling 방법으로 입사하여 소자의 파장 특성을 측정하였다. 제작된 소자는 1480 nm 와 1550 nm 파장 영역을 분리, 수광할 수 있음을 보였다.

  • PDF

Cyclic olefin copolymer (COC) 폴리머 프리즘을 사용한 광섬유 기반 표면 플라즈몬 공명 (SPR) 바이오 센서 (A fiber optic surface plasmon resonance (SPR) sensorusing cyclic olefin copolymer (COC) polymer prism)

  • 윤성식;이수현;안종혁;이종현
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.369-374
    • /
    • 2008
  • A novel fiber optic surface plasmon resonance (SPR) sensor using cyclic olefin copolymer (COC) prism with the spectral modulation is presented. The SPR sensor chip is fabricated using the SU-8 photolithography, Ni-electroplating and COC injection molding process. The sidewall of the COC prism is partially deposited with Au/Cr (45/2.nm thickness) by e-beam evaporator, and the thermal bonding process is conducted for micro fluidic channels and optical fibers alignment. The SPR spectrum for a phosphate buffered saline (0.1.M PBS, pH.7.2) solution shows a distinctive dip at 1300.nm wavelength, which shifts toward longer wavelength with respect to the bovine serum albumin (BSA)concentrations. The sensitivity of the wavelength shift is $1.16\;nm{\cdot}{\mu}g^{-1}{\cdot}{\mu}l^{-1}$. From the wavelength of SPR dips, the refractive indices (RI) of the BSA solutions can be theoretically calculated using Kretchmann configuration, and the change rate of the RI was found to be $2.3{\times}10^{-5}RI{\cdot}{\mu}g^{-1}{\cdot}l^{-1}$. The realized fiber optic SPR sensor with a COC prism has clearly shown the feasibility of a new disposable, low cost and miniaturized SPR biosensor for biochemical molecular analyses.