• Title/Summary/Keyword: Spectral coding

Search Result 146, Processing Time 0.023 seconds

Performance Analysis of Coded-OFDM for Wireless Multimedia Communication (무선멀티미디어 통신을 위한 Coded-OFDM의 성능 해석)

  • 김창선;김성곤;이창호;변건식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.196-201
    • /
    • 2002
  • OFDM(orthogonal Frequency Division Multiplex) modulates transmitting data with many carriers in parallel. As a result, high-speed data transmission is carried out and high spectral efficiency is provided by overlapping orthogonal frequencies. Therefore, OFDM is applied to many communication systems. In this paper, according to modulation methods(M-PSK and M-QAM), coded-OFDM wireless communication is simulated. Turbo code is used and two channels(virtual and real channel) are used. both channels have multipath delay spread, Gaussian noise, and peak power clipping. As a result of the simulation, coding gain is about 3dB and it is proved that M-QAM modulation is better than M-PSK. Start after striking space key 2 times.

A Study on MIMO-ARQ Scheme Using D-MSSTC (D-MSSTC를 이용한 MIMO-ARQ에 관한 연구)

  • Jeon, Chanyong;Lee, Jeong Woo
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.70-72
    • /
    • 2017
  • We proposed a multi-input multi-output automatic repeat request (MIMO-ARQ) scheme using double multi-strata space-time code (D-MSSTC) for high spectral efficiency in $4{\times}N_r$ MIMO systems. To improve error performance of the proposed scheme, we allocate power and phase to each layer of MSSTC over every transmission. Additionally, we suboptimally optimize power allocation to maximize the minimum coding gain distance of D-MSSTC and phase allocation to efficiently minimize inter-layer interference in MSSTC. In simulation results, it is observed that the proposed MIMO-ARQ scheme based on D-MSSTC shows better block error rate (BLER) performance than conventional schemes.

Multibeam Satellite Frequency/Time Duality Study and Capacity Optimization

  • Lei, Jiang;Vazquez-Castro, Maria Angeles
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.472-480
    • /
    • 2011
  • In this paper, we investigate two new candidate transmission schemes, non-orthogonal frequency reuse (NOFR) and beam-hopping (BH). They operate in different domains (frequency and time/space, respectively), and we want to know which domain shows overall best performance. We propose a novel formulation of the signal-to-interference plus noise ratio (SINR) which allows us to prove the frequency/time duality of these schemes. Further, we propose two novel capacity optimization approaches assuming per-beam SINR constraints in order to use the satellite resources (e.g., power and bandwidth) more efficiently. Moreover, we develop a general methodology to include technological constraints due to realistic implementations, and obtain the main factors that prevent the two technologies dual of each other in practice, and formulate the technological gap between them. The Shannon capacity (upper bound) and current state-of-the-art coding and modulations are analyzed in order to quantify the gap and to evaluate the performance of the two candidate schemes. Simulation results show significant improvements in terms of power gain, spectral efficiency and traffic matching ratio when comparing with conventional systems, which are designed based on uniform bandwidth and power allocation. The results also show that BH system turns out to show a less complex design and performs better than NOFR system specially for non-real time services.

Feature Parameter Extraction and Analysis in the Wavelet Domain for Discrimination of Music and Speech (음악과 음성 판별을 위한 웨이브렛 영역에서의 특징 파라미터)

  • Kim, Jung-Min;Bae, Keun-Sung
    • MALSORI
    • /
    • no.61
    • /
    • pp.63-74
    • /
    • 2007
  • Discrimination of music and speech from the multimedia signal is an important task in audio coding and broadcast monitoring systems. This paper deals with the problem of feature parameter extraction for discrimination of music and speech. The wavelet transform is a multi-resolution analysis method that is useful for analysis of temporal and spectral properties of non-stationary signals such as speech and audio signals. We propose new feature parameters extracted from the wavelet transformed signal for discrimination of music and speech. First, wavelet coefficients are obtained on the frame-by-frame basis. The analysis frame size is set to 20 ms. A parameter $E_{sum}$ is then defined by adding the difference of magnitude between adjacent wavelet coefficients in each scale. The maximum and minimum values of $E_{sum}$ for period of 2 seconds, which corresponds to the discrimination duration, are used as feature parameters for discrimination of music and speech. To evaluate the performance of the proposed feature parameters for music and speech discrimination, the accuracy of music and speech discrimination is measured for various types of music and speech signals. In the experiment every 2-second data is discriminated as music or speech, and about 93% of music and speech segments have been successfully detected.

  • PDF

Achievable Sum Rate of NOMA with Negatively-Correlated Information Sources

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.75-81
    • /
    • 2021
  • As the number of connected smart devices and applications increases explosively, the existing orthogonal multiple access (OMA) techniques have become insufficient to accommodate mobile traffic, such as artificial intelligence (AI) and the internet of things (IoT). Fortunately, non-orthogonal multiple access (NOMA) in the fifth generation (5G) mobile networks has been regarded as a promising solution, owing to increased spectral efficiency and massive connectivity. In this paper, we investigate the achievable data rate for non-orthogonal multiple access (NOMA) with negatively-correlated information sources (CIS). For this, based on the linear transformation of independent random variables (RV), we derive the closed-form expressions for the achievable data rates of NOMA with negatively-CIS. Then it is shown that the achievable data rate of the negatively-CIS NOMA increases for the stronger channel user, whereas the achievable data rate of the negatively-CIS NOMA decreases for the weaker channel user, compared to that of the positively-CIS NOMA for the stronger or weaker channel users, respectively. We also show that the sum rate of the negatively-CIS NOMA is larger than that of the positively-CIS NOMA. As a result, the negatively-CIS could be more efficient than the positively-CIS, when we transmit CIS over 5G NOMA networks.

Dummy Sequence Insertion for PAPR Reduction of OFDM Communication System (OFDM 통신시스템의 PAPR 저감을 위한 더미 시퀀스 삽입)

  • 이재은;유흥균;정영호;함영권
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1239-1247
    • /
    • 2003
  • OFDM(orthogonal frequency division multiplexing) communications system is very attractive for the high data rate transmission in the frequency selective lading channel. Since OFDM has high PAPR(peak-to-average power ratio), OFDM signal may be distorted by the nonlinear HPA(high power amplifier). In this paper, we propose the DSI(dummy sequence insertion) method for OFDM communication system. Some sub-carriers are inserted for PAPR reduction. They carry the specified dummy data sequence which are used for only PAPR reduction and do not work as side information like the conventional PTS(partial transmit sequence) or SLM(selected mapping) method. We use the complementary sequence and the combination of the correlation sequence as the dummy sequence. Flipping technique is used for the DSI method to get the effective PAPR reduction. It is important that BER of the proposed method is independent of the damage of the dummy data sequence. And DSI method has better spectral efficiency than the conventional block coding. On the other hand, threshold PAPR method is applied to cut down the processing time. However, this DSI method is not better than the conventional PTS method in the respect of the PAPR reduction performance. The DSI method includes the threshold PAPR lower than the PAPR of the OFDM signal, reduces the processing time and improves the BER performance.

Implementation Algorithms and Performance Analysis of Maritime VHF Data System Based on Filtered Multi-Tone Modulation (FMT 변조 기반의 해상 초단파 데이터 시스템의 구현 알고리즘 및 성능분석)

  • Park, Ok-Sun;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.254-262
    • /
    • 2013
  • This paper proposes FMT(Filtered Multi-Tone)-based digital radio implementation algorithms and the results obtained by various field tests especially in terms of transmitter characteristics. In this study, we predefined frame structure and protocols used for the CSTDMA(Carrier Sensing Time Division Multiple Access) scheme, designed digital filters and RF front end to fulfill the system characteristics such as the spectral mask and processing delays given by the Recommendation ITU-R M.1842-1. The proposed system supports exchange of data for e-Navigation with the usage of wider channel of 50-100kHz bandwidth, Turbo coding and FMT modulation. Furthermore, the common Ethernet protocol makes connection to local WLAN(Wireless Local Area Network) on board the ship for other data services.

Efficient Link Adaptation Scheme using Precoding for LTE-Advanced Uplink MIMO (LTE-Advanced에서 프리코딩에 의한 효율적인 상향링크 적응 방식)

  • Park, Ok-Sun;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.159-167
    • /
    • 2011
  • LTE-Advanced system requires uplink multi-antenna transmission in order to achieve the peak spectral efficiency of 15bps/Hz. In this paper, the uplink MIMO system model for the LTE-Advanced is proposed and an efficient link adaptation shceme using precoding is considered providing error rate reduction and system capacity enhancement. In particular, the proposed scheme determines a transmission rank by selecting the optimal wideband precoding matrix, which is based on the derived signal-to-interference and noise ratio (SINR) for the minimum mean squared error (MMSE) receivers of $2{\times}4$ multiple input multiple output (MIMO). The proposed scheme is verified by simulation with a practical MIMO channel model. The simulation results of average block-error-rate(BLER) reflect that the gain due to the proposed rank adapted transmission over full-rank transmission is evident particularly in the case of lower modulation and coding scheme (MCS) and high mobility, which means the severe channel fading environment.

Interband Vector Quantization of Remotely Sensed Satellite Image Using Edge Region Compensation (에지 영역 보상을 이용한 원격 센싱된 인공위성 화상의 대역간 벡터양자화)

  • Ban, Seong-Won;Kim, Young-Choon;Lee, Kuhn-Il
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.124-132
    • /
    • 1999
  • In this paper, we propose interband vector quantization of remotely sensed satellite image using edge region compensation. This method classifies each pixel vector considering spectral reflection characteristics of satellite image data. For each class, we perform classified intraband VQ and classified interband VQ to remove intraband and interband redundancies, respectively. In edge region case, edge region is compensated using class information of neighboring blocks and gray value of quantized reference band. Then we perform classified interband VQ to remove interband, redundancy using compensated class information, effectively. Experiments on remotely sensed satellite image show that coding efficiency of the proposed method is better than that of the conventional method.

  • PDF

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.