• Title/Summary/Keyword: Spectral Separation Coefficient

Search Result 9, Processing Time 0.023 seconds

A NONLINEAR CONVEX SPLITTING FOURIER SPECTRAL SCHEME FOR THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE ENERGY

  • Kim, Junseok;Lee, Hyun Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-276
    • /
    • 2019
  • For a simple implementation, a linear convex splitting scheme was coupled with the Fourier spectral method for the Cahn-Hilliard equation with a logarithmic free energy. However, an inappropriate value of the splitting parameter of the linear scheme may lead to incorrect morphologies in the phase separation process. In order to overcome this problem, we present a nonlinear convex splitting Fourier spectral scheme for the Cahn-Hilliard equation with a logarithmic free energy, which is an appropriate extension of Eyre's idea of convex-concave decomposition of the energy functional. Using the nonlinear scheme, we derive a useful formula for the relation between the gradient energy coefficient and the thickness of the interfacial layer. And we present numerical simulations showing the different evolution of the solution using the linear and nonlinear schemes. The numerical results demonstrate that the nonlinear scheme is more accurate than the linear one.

RF Compatibility Analysis of GNSS and KPS Signals at L6/S-band

  • Lee, Subin;Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • In order to develop a Korea Positioning System (KPS) as part of key national infrastructure, independent navigation signal design is essential. The designed signal candidates must coexist with existing or planned GNSS signals within the limited frequency band. This requires a RF compatibility assessment, which can be performed using the Spectral Separation Coefficient (SSC) and Effective Carrier to Noise Density Ratio (Effective C/N0), for navigation signals. Thus, in this paper, the analysis of RF compatibility between the designed signal candidates and the existing GNSS signals is carried out based on analytical and numerical techniques.

A Study on The Interference between Global Navigation Satellite Systems (위성항법 시스템 간 간섭 영향에 관한 연구)

  • Kim, Jeong-Been;Kim, Jae-Kil;Lee, Sung-Yoon;Lee, Je-Won;Kim, Kap-Jin;Song, Ki-Won;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.512-519
    • /
    • 2012
  • To design a new Navigation Satellite System signal, we should analyze the influence of inter-system interference to existing Global Navigation Satellite Systems(GNSS). Various GNSS systems such as GSP, GALILEO, Compass use same frequence band and incur inter-system interference due to the overlapping spectrums. In this paper, we consider L2 Band for new Navigation Satellite System and propose the BOCcos(15,2.5) signal what has least Spectral Separation Coefficient with GPS L2 system. Assuming 4 stationary satellite over Korea, we simulate the effect of interference. As a result, proposed system shows very small mutual interference effect and negligible effective signal to noise ratio(SNR) loss, compared to the interferences between GNSS systems in L1 Band.

Vitamin C Tablet Assay by Near -Infrared Reflectance spectrometry

  • Kargosha, Kazem;Ahmadi, Hamid;Nemati, Nader
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4111-4111
    • /
    • 2001
  • When a drug is prepared in a tablet, the active component represents only a small portion of the dosage form. The other components of the formulation include materials to assist in the dissolution, antioxidants, coloring agents and bulk fillers. The tablets are tested using approved testing methods usually involving separation and subsequent quantification of the active component. Tablets may also be tested by near-Infrared Reflectance spectrometry (NIRS). In the present study, based on NIRS and multivariate calibration methods, a novel and precise method is developed for direct determination of ascorbic acid in vitamin C tablet. Two different tablet formulations were powdered in three different sizes, 63-125 ${\mu}{\textrm}{m}$, and examined. Spectral region of 4750-4950 $cm^{-1}$ / was used and optimized for quantitative operations. Partial least squares (PLS) and multiple linear regression (MLR) methods were performed for this spectral region. The results of optimized PLS and MLR methods showed that reproducibility increase with decreasing grain size and standard error of calibration (SEP) of less than 1% w/w of ascorbic acid and a correlation coefficient of 0.998 can be achieved. The PLS method showed better results than MLR. Seven overdose and underdose samples (prepared in the laboratory to match marketed products) were tested by proposed and iodometric standard methods. A correlation between NIRS predicted ascorbic acid values and iodomet.ic values was calculated ($R^2$=0.9950). Finally, the direct analysis of individual intact tablets in their unit-dose packages (Blistering in aluminum and PVC foils) obtained from market were also carried out and a correlation coefficient of 0.9989 and SEP of 0.931% w/w of ascorbic acid were achieved.

  • PDF

Circular cylinder drag reduction using piezoelectric actuators

  • Orazi, Matteo;Lasagna, Davide;Iuso, Gaetano
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • An active flow control technique based on "smart-tabs" is proposed to delay flow separation on a circular cylinder. The actuators are retractable and orientable multilayer piezoelectric tabs which protrude perpendicularly from the model surface. They are mounted along the spanwise direction with constant spacing. The effectiveness of the control was tested in pre-critical and in post-critical regime by evaluating the effects of several control parameters of the tabs like frequency, amplitude, height, angular position and plate incidence with respect to the local flow. Measurements of the mean static pressure distribution around the cylinder were used to estimate the pressure drag coefficient. The maximum drag reduction achieved in the pre-critical regime was of the order of 30%, whereas in the post-critical regime was about 10%, 3% of which due to active forcing. Furthermore, pressure fluctuation measurements were performed and spectral analysis indicated an almost complete suppression of the vortex shedding in active forcing conditions.

Acoustical Similarity for Small Cooling Fans Revisited (소형 송풍기 소음의 음향학적 상사성에 관한 연구)

  • 김용철;진성훈;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.196-201
    • /
    • 1995
  • The broadband and discrete sources of sound in small cooling fans of propeller type and centrifugal type were investigated to understand the turbulent vortex structures from many bladed fans using ANSI test plenum for small air-moving devices (AMDs). The noise measurement method uses the plenum as a test apparatus to determine the acoustic source spectral density function at each operating conditions similar to real engineering applications based on acoustic similarity laws. The characteristics of fans including the head rise vs. volumetric flow rate performance were measured using a performance test facility. The sound power spectrum is decomposed into two non-dimensional functions: an acoustic source spectral distribution function F(St,.phi.) and an acoustic system response function G(He,.phi.) where St, He, and .phi. are the Strouhal number, the Helmholtz number, and the volumetric flow rate coefficient, respectively. The autospectra of radiated noise measurements for the fan operating at several volumetric flow rates,.phi., are analyzed using acoustical similarity. The rotating stall in the small propeller fan with a bell-mouth guided is mainly due to a leading edge separation. It creates a blockage in the passage and the reduction in the flow rate. The sound power levels with respect to the rotational speeds were measured to reveal the mechanisms of stall and/or surge for different loading conditions and geometries, for example, fans installed with a impinging plate. Lee and Meecham (1993) studied the effect of the large-scale motions like impinging normally on a flat plate using Large-Eddy Simulation(LES) and Lighthill's analogy.[ASME Winter Annual Meeting 1993, 93-WA/NCA-22]. The dipole and quadrupole sources in the fans tested are shown closely related to the vortex structures involved using cross-correlations of the hot-wire and microphone signals.

  • PDF

NUMERICAL ANALYSIS OF THE FLOW AROUND A ROTARY OSCILLATING CIRCULAR CYLINDER USING UNSTEADY TWO DIMENSIONAL NAVIER-STOKES EQUATION (Navier-Stokes 식을 이용한 회전 진동하는 2차원 원형 실린더 주위 유동 해석)

  • Lee, M.K.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.8-14
    • /
    • 2011
  • Although the geometry of circular cylinder is simple, the flow is complicate because of the flow separation and vortex shedding. In spite of many numerical and experimental researches, the flow around a circular cylinder has not been clarified even now. It has been known that the unsteady vortex shedding from a circular cylinder can vibrate and damage a structure. Lock-on phenomenon is very important in the flow around an oscillating circular cylinder. The lock-on phenomenon is that when the oscillation frequency of the circular cylinder is at or near the frequency of vortex shedding from a stationary cylinder, the vortex shedding synchronizes with the cylinder motion. This phenomenon can be recognized by the spectral analysis of the lift coefficient history. At the lock-on region the vortex is shedding by the modulated frequency to the body frequency. However, the vortex is shedding by the mixed frequencies of natural shedding and forced body frequency in the region of non-lock-on. In this paper, it was analyzed the relation between the frequency of rotary oscillating circular cylinder and the vortex shedding frequency.

Interference Analysis of KPS Signals on the L-band GNSS Signals

  • Shin, Jang Hwan;Lim, Deok-Won;Joo, Jung-Min;Lee, Sang Jeong;Song, Hong-Yeop;Won, Jong-Hoon;Ahn, Jae Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.319-325
    • /
    • 2020
  • In order to propose new satellite navigation signals, it is essential to analyze the increased level of interference effect that the existing signals suffer. In this paper, a method for estimating the power density of the interference signals on GPS signals is proposed before and after the additional transmission of the KPS signals in the L1, L2 and L5 bands. For estimation, we assume the number of visible satellites observed over the Korean peninsular and the minimum received power of the satellite navigation signals. The comparison of the estimated values shows that the power density of the interfering signal increases by up to 1.37 dB due to the introduction of KPS, but this leads to an increase in interference plus noise power density below 0.47 dB.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF