• Title/Summary/Keyword: Spectral Power Spectrum

Search Result 340, Processing Time 0.022 seconds

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

Resource allocation for Millimeter Wave mMIMO-NOMA System with IRS

  • Bing Ning;Shuang Li;Xinli Wu;Wanming Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.2047-2066
    • /
    • 2024
  • In order to improve the coverage and achieve massive spectrum access, non-orthogonal multiple access (NOMA) technology is applied in millimeter wave massive multiple-input multiple-output (mMIMO) communication network. However, the power assumption of active sensors greatly limits its wide applications. Recently, Intelligent Reconfigurable Surface (IRS) technology has received wide attention due to its ability to reduce power consumption and achieve passive transmission. In this paper, spectral efficiency maximum problem in the millimeter wave mMIMO-NOMA system with IRS is considered. The sparse RF chain antenna structure is designed at the base station based on continuous phase modulation. Furthermore, a joint optimization problem for power allocation, power splitting, analog precoding and IRS reconfigurable matrices are constructed, which aim to achieve the maximum spectral efficiency of the system under the constraints of user's quality of service, minimum energy harvesting and total transmit power. A three-stage iterative algorithm is proposed to solve the above mentioned non-convex optimization problems. We obtain the local optimal solution by fixing some optimization parameters firstly, then introduce the relaxation variables to realize the global optimal solution. Simulation results show that the spectral efficiency of the proposed scheme is superior compared to the conventional system with phase shifter modulation. It is also demonstrated that IRS can effectively assist mmWave communication and improve the system spectral efficiency.

An algorithm for real time blood flow estimation of LDF (LDF의 실시간 혈류추정을 위한 알고리즘)

  • Kim, Jong-Weon;Ko, Han-Woo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.78-79
    • /
    • 1998
  • This paper describes a real time algorithm for blood flow estimation of LDF(laser Doppler flowmeter). Many algorithms for blood flow estimation are using power spectral density of Doppler signal by blood flow. In these research, the fast Fourier transformation is used to estimate power spectral density. This is a block processing procedure rather than real time processing. The algorithm in this paper used parametric spectral estimation. This has real time capability by estimation of AR(autoregressive) parameters sample by sample, and has smoothing power spectrum. Also, the frequency resolution is not limited by number of samples used to estimate AR parameter. Another advantage of this algorithm is that AR model enhance SNR.

  • PDF

Extraction Method of Ultrasound Spectral Information using Phase-Compensation and Weighted Averaging Techniques (위상 보상과 가중치 평균을 이용한 의료 초음파 신호의 주파수 특성 추출 방법)

  • Kim, Hyung-Suk;Yi, Joon-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.959-966
    • /
    • 2010
  • Quantitative ultrasound analysis provides fundamental information of various ultrasound parameters using spectral information of the short-gated radiofrequency(RF) data. Therefore, accurate extraction of spectral information from backscattered RF signal is crucial for further analysis of medical ultrasound parameters. In this paper, we propose two techniques for calculating a more accurate power spectrum which are based on the phase-compensation using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio(SNR). The simulation results demonstrate that the proposed method estimates better results with 10% smaller estimation variances compared to the conventional methods.

Optimal earthquake intensity measures for probabilistic seismic demand models of ARP1400 reactor containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Azad, Md Samdani;Tran, Viet-Linh;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4179-4188
    • /
    • 2021
  • This study identifies efficient earthquake intensity measures (IMs) for seismic performances and fragility evaluations of the reactor containment building (RCB) in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). The computational model of RCB is constructed using the beam-truss model (BTM) for nonlinear analyses. A total of 90 ground motion records and 20 different IMs are employed for numerical analyses. A series of nonlinear time-history analyses are performed to monitor maximum floor displacements and accelerations of RCB. Then, probabilistic seismic demand models of RCB are developed for each IM. Statistical parameters including coefficient of determination (R2), dispersion (i.e. standard deviation), practicality, and proficiency are calculated to recognize strongly correlated IMs with the seismic performance of the NPP structure. The numerical results show that the optimal IMs are spectral acceleration, spectral velocity, spectral displacement at the fundamental period, acceleration spectrum intensity, effective peak acceleration, peak ground acceleration, A95, and sustained maximum acceleration. Moreover, weakly related IMs to the seismic performance of RCB are peak ground displacement, root-mean-square of displacement, specific energy density, root-mean-square of velocity, peak ground velocity, Housner intensity, velocity spectrum intensity, and sustained maximum velocity. Finally, a set of fragility curves of RCB are developed for optimal IMs.

Speech Recognition in Noisy Environments using the NOise Spectrum Estimation based on the Histogram Technique (히스토그램 처리방법에 의한 잡음 스펙트럼 추정을 이용한 잡음환경에서의 음성인식)

  • Kwon, Young-Uk;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.68-75
    • /
    • 1997
  • Spectral subtraction is widely-used preprocessing technique for speech recognition in additive noise environments, but it requires a good estimate of the noise power spectrum. In this paper, we employ the histogram technique for the estimation of noise spectrum. This technique has advantages over other noise estimation methods in that it does not requires speech/non-speech detection and can estimate slowly-varying noise spectra. According to the speaker-independent isolated word recognition in both colored Gaussian and car noise environments under various SNR conditions. Histogram-technique-based spectral subtraction method yields superier performance to the one with conventional noise estimation method using the spectral average of initial frames during non-speech period.

  • PDF

Characteristics on the Breakdown and Frequency Spectrum of High Power Microwave Pulse Propagating through the Atmosphere (고출력 마이크로파 펄스의 대기권 전파시 방전 및 주파수 스펙트럼에 관한 특성)

  • Kim, Yeong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.591-597
    • /
    • 1999
  • The propagation characteristics of high power microwave pulse in an air-breakdown environment are examined. The maximum electron density produced by microwave air-breakdown is limited to $10^6cm^{-3}$ by the tail-erosion effect. Inorder to increase the electron density, the scheme using two pulses intersecting at a desired height is considered. Increasing the carrier frequency, it is shown that microwave pulse can be transferred without the serious erosion in the numerical simulation. This result is useful for the above scheme. Also, an experiment is conducted to show the tail-erosion effect and confirm that a rapidly generated lossy plasma can cause spectral breaking and frequency shift of a high-power microwave pulse. The experimental results are presented by comparing the frequency spectrum of an incident pulse with that of the pulse transmitted through a self-induced air-breakdown environment. The experimental results show that the amount of frequency upshift is co-related with the ionization rate, whereas that of frequency downshift is correlated with the energy losses from the pulse in the self-generated plasma.

  • PDF

Development for the Index of an Anesthesia Depth using the Power Spectrum Density Analysis (뇌파 스펙트럼 분석에 의한 마취 심도 지표 개발)

  • Ye, Soo-Young;Baik, Swang-Wan;Kim, Jae-Hyung;Park, Jun-Mo;Jeon, Gye-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.327-332
    • /
    • 2009
  • In this paper, new index was developed to estimate the depth of anesthesia during general anesthesia using EEG. Analysis of the power spectral density(PSD) of EEG was used to develop new parameters because EEG signal tends to have slow wave during anesthesia. Classifier for index creator was developed by using SEF, BDR and BTR parameters, which are calculated by power spectral density. EEG data were obtained from 7 patients (ASA I, II) during general anesthesia with Sevoflurane. The anesthetic depth evaluation indexes ranged from 0 to 100. The average were $86.05{\pm}10.1$, $36.98{\pm}20.2$, $15.33{\pm}13.6$, $50.87{\pm}16.5$ and $87.72{\pm}11.7$ for the states of pre-operation, induction of anesthesia, operation, awaked and post-operation, respectively. The results show that while the depth of anesthesia was evaluated, more accurate information can be provided for anesthetician.

Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity (변동풍속의 파워 스펙트럴 밀도에 관한 평가)

  • Oh, Jong Seop
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2017
  • Wind turbulence data is required for engineering calculations of gust speeds, mean and fluctuating loading. Spectral densities are required as input data for methods used in assessing dynamic response. This study is concerned with the estimation of daily instantaneous maximum wind velocity in the meteorological major cities (selected each 6 points) during the yearly 1987-2016.12.1. The purpose of this paper is to present the power spectral densities of the daily instantaneous maximum wind velocity. In the processes of analysis, used observations data obtained at Korea Meteorological Adminstration(KMA), it is assumed as a random processes. From the analysis results, in the paper estimated power spectral densities function(Blunt model) shows a very closed with von Karman and Solari's spectrum models.

Noise Suppression Using Normalized Time-Frequency Bin Average and Modified Gain Function for Speech Enhancement in Nonstationary Noisy Environments

  • Lee, Soo-Jeong;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.1-10
    • /
    • 2008
  • A noise suppression algorithm is proposed for nonstationary noisy environments. The proposed algorithm is different from the conventional approaches such as the spectral subtraction algorithm and the minimum statistics noise estimation algorithm in that it classifies speech and noise signals in time-frequency bins. It calculates the ratio of the variance of the noisy power spectrum in time-frequency bins to its normalized time-frequency average. If the ratio is greater than an adaptive threshold, speech is considered to be present. Our adaptive algorithm tracks the threshold and controls the trade-off between residual noise and distortion. The estimated clean speech power spectrum is obtained by a modified gain function and the updated noisy power spectrum of the time-frequency bin. This new algorithm has the advantages of simplicity and light computational load for estimating the noise. This algorithm reduces the residual noise significantly, and is superior to the conventional methods.