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Abstract

A noise suppression algorithm is proposed for nonstationary noisy environments. The proposed aigorithin is different from the
conventional approaches such as the the spectral subtraction algorithm and the minimum statistics noise estimation algorithm in
that it classifies speech and noise signals in time-frequency bins. It calculates the ratio of the variance of the noisy power spectrum
in time-frequency bins to its normalized time-frequency average. If the ratio is greater than an adaptive threshold, speech is considered
to be present. Our adaptive algorithm tracks the threshold and controls the trade-off between residual noise and distortion. The
estimated clean speech power spectrum is obtained by a modified gain function and the updated noisy power spectrum of the
time-frequency bin. This new algorithm has the advantages of simplicity and light computational load for estimating the noise.
This algorithm reduces the residual noise significantly, and is superior to thc conventional methods.
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l. Introduction

Noise suppression is a crucial factor of many
modern speech communications systems. Generally
implemented as a preprocessing component, noise
suppression improves the performance of communication
systems for speech signals corrupted by noise
through improving the speech quality or intelligi—
bility. As it is difficult to reduce noise without di—
storting the speech, the performance of speech
enhancement systems is usually a trade—off hetween
speech distortion and noise reduction [1].

Current single microphone speech enhancement
methods belong to two categories, namely, time do—

main methods such as the subspace approach and
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frequency domain methods such as the spectral sub—
traction (8S), minimum mean square ervor (MMSE)
estimator [2, 3] and Wiener filter. Both methods
have their own advantages and drawbacks. The
subspace methods provide a mechanism to control
the tradeoff between speech distortion and residual
noise, but with the cost of heavy computational load.

Frequency domain methods, on the other hand,
usually consusne less computational resources, but
do not have a theoretically established mechanism
to control tradeoff between speech distortion and
residual notse. Among them, spectral subtraction is
computationally efficient and has a simple mechanism
to control tradeoff between speech distortion and
residual noise, but suffers from a notorious artifact
known as “musical noise” [4, 5]. The MMSE es—
timator and Wiener estimator have moderate computa—
tional load, but have no mechanism to control trade
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off between speech distortion and residual noise [5].

Recently, various studies have examined noise
estimation techniques {6, 7, 8, 9, 10]. These methods
are designed for unknown nonstationary noise signals
using minimum statistics. Martin proposed an algorithm
for noise estimation based on minimum statistics [6].
The ability to track varying noise levels is a pro—
minent feature of the minimum statistics (MS) algorithm
[6]. The main drawback of this method is that it
takes more time than the duration of the minimum
—search window to update the noise spectrum when
the noise level increases suddenly.

Cohen proposed a minima—controtled recursive
algorithm (MCRA) (8] which updates the noise es—
timate by tracking the noise—only regions of the
noisy speech spectrum. These regions are found by
comparing the ratio of the noisy speech to the local
minimum against a threshotd. However, the noise
estimate delays by at least twice the window length
when the noise spectrum increases suddenly [8].

Moreover, a disadvantage to most of the noise
—estimation schemes mentioned above is that residual
noise is still present in frames in which speech is
absent. In addition, the estimation of the noise
spectrum is quite complex.

In this paper, we describe a method to enhance
speech by improving its overall guality while mini—
mizing residual noise and distortion. The proposed
algorithm is based on calculating the ratio of the
variance of the noisy power spectrum in the time—
frequency bin to its normalized time—frequency
average (NTFA) [11]. The algorithm determines
that speech is present only if the ratio is greater than
the adaptive threshold. Specifically, our method uses
an adaptive scheme for tracking the threshold in a
nonstationary noisy environment to control the trade
—off between speech distortion and residual noise.
The algorithm has the advantages of simplicity and
light computational load for estimating the noise.
Moreover, this algorithm reduces the residual noise
significantly. We compare the new algorithm to the
conventional methods [6, 7]. The segmental signal—
to—noise ratio (SNR), and the ITU-T (P.835) sub—
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jective measure [12] were compared under various
noise conditions [13]. We examine the adaptive trac—
king capability for non—stationary environments. We
show that the performance of the proposed algorithm
is superior to that of conventional methods.

The structure of the paper is as follows. Section
2 introduces the overall system model. Section 3
describes (he proposed noise reduction algorithm,
while Section 4 contains the experimental results
and discussion. The concluston in Section 5 looks at
future research directions [or the algorithm.

Il. System modei

Assuming that speech and noise are uncorrelated,
the noisy speech signal z(») can be represented as

:n(n) =s(n) +d{n) (1)

where s(n) is the clean speech signal and d(n) is
the noise signal. Dividing the signal into overlapping
frames using a window function and applying the
short—time Fourier transform (STFT) to each frame
gives the time—{requency representation X{k(!)=,
S{k,t) + D(k,t) where k is the frequency bin index and
{ is the frame index [14]. In a more formal form, the

noisy spectrum can be represented as

A=l Mk

{X(k, 2} = Efc(n+ll;]w(n)e_j( v 2}

n=1
where w 1s the window function, & is the size of the
windows and £ is the framing step. The power
spectrum of the noisy speech |X(k,!)I* can then be

represented as
LXCk, £ )P = 1Sk, L) + DR, (3

where 15(k,{)P is the power spectrum of the clean
speech signal and [D(£,1)I is the power spectrum of
the noise signal. The proposed algorithm is summarized
in the block diagram shown in Fig. 1. It consists of

seven main components: time—frequency analysis
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Figure 1. Flow diagram of the proposed speech enhancement
algorithm.

and synthesis, noise power cstimate, adaptive threshold,
separation of speech—presence and absence in time
—frequency bin, updated noisy power spectrum. and
modified gain function.

lll. Proposed noise reduction algorithm

The noise reduction algorithm is based on the
variance of the noisy power speclrum in a time and
frequency—dependent manner as follows:

.y

p Al = ElX k)P, g (& %ZIX(M)I? )]
=

var, (1) = 2(|X(kl W=, (1)) (5)

vurf(]» E{LXU& l)|2—;;f(k) (6)
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where 1, 1S the average of noisy power spectrum
in the frequency bin, g, is the average of noisy power
spectrum for the frame index, and <;f and c;} is the
assumed estimate of noise power. Equation 8 gives

the ratio of the variance for the noisy power spectrum

Frame index
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Figure 2. Procedure for estimating noise power using the noisy
power spectrum.

in the time—frequency bin to its normalized time
—frequency average. In the case of a region where
a strong spcech signal is present, the normalized
variance calcutated by Equation 8 will be high. This
is generally not true for a region without a speech
signal. Therefore, we can use the ratio in Equation
8 to classify the speech—presence and absence in
the time—frequency bins. Figure 2 shows the model
for estimatling the noise power using the noisy power
spectrum,

3.1. Separation of speech and noise in frames

using an adaptive thresholds
Ow method uses an adaptive algorithm to track the
threshold and control the trade—off between speech
distortion and residual noise:

£(1) =, (1} 44, )]
£,=6(1) -, (10)
w=6(1) - & (n
a,(ty=6{1—-1}—~,{1—-1) (12)
IFo(l) > 6, (13)
) =g-1) « (1)t * ¢,
else IF {, < «,(1) £ 6,
Ey=¢U-1) - G +&w e G
else
UV =&U—1) « (1=¢)+&y 0 ¢,

where ¢,(1) is the adaptive threshold set recur—

sively. Equation 9 is the initial value of ¢(1), and ¢&,;
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and £, are the lower and upper limits of (1),
respectively. We define control parameter, §,, lower
limit constant, 4,,= 0.5 and upper limit constant, §,,
= 2.0, and can obtain ¢,(1) using the ratio ~,(1) and
the control parameter §,. In Equation 9, we ¢stimate
the v,(1) for the frame of the initial speech—absence.
Equation 10 and 11, the lower and upper limits of
& (1) are defined by the £{(1), §,, and é,,. Then, the
tracking value a,(i) calculated as the difference
between the adaptive threshold &{I—1) and the ratio
v(1—1). Equation 12 is used to track the adaptive
thresholds &(1). This threshold &,(!) is adaptive in
the sense that it changes depending on the tracking
value «,(I). The adaptive threshold ¢,(1) that operate
the prior frame is required: the adaptive thresholds
not use noise power spectrum estimate from the
speech—absence frames such as the SS and MMSE
[2, 3. If @,{1) is greater than the control parameter
&, &(1} decreases using the lower limit £, and the
weighting constant ¢, =0.8 for tracking the ratio (1}
between the lower ¢, and upper limits &,,. If «,{)
is between (, =00 and §,, & (1)} does slightly increases
using the upper limit &, and the weighting constant
¢ =06. If «,(I) is less than the tracking constant
¢, =0.0, the threshold level ¢(7) increases using the
upper limit £, and the weighting constant ¢, =0.8 for
tracking the ratio +,(1) between the ¢, and ¢,.
Constants 6, =05, §,,=20, (=08, (=06, and
¢, =0.0 are experimental values we used.

In order to improve the balance between the
speech distortion and residual noise, we show that
the adaptive threshold allows a trade—off between
speech distortion and residual noise by controlling
in Figure 3. Figure 3 shows the effect of 4, on SNR
gains. The output SNR is calculated in a manner
similar to the input SNR. The noise power is cal—
cutated as the power of the speech signal obtained
by subtracting the filtered speech signal from the
clean speech signal. Simulation results show that an
increase in the §, parameter is good for noisy signals
with a low SNR of less than 5 dB, and that a decrease
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in 4, is good for noisy signals with a relatively high
SNR of greater than 15 dB. The 4, parameter is set
to a constant of 0.1 based on initial experiments, but
a fixed 4, will clearly not be optimal over a wide
range of SNRs. For example, setting §, to 0.25 yields
high SNR gain at a low input SNR of 5 dB; however,
it also degrades the input speech signal at a high SNR
of 15 dB.

Distortion of the original speech signal is ex—
tremely undesirable in real practical environments.
Second, Figure 4 shows the effect of &, on signal
distortion (SIG) scores. Simulation results show that
the increase in 4, is beneficial for noisy signals with
low SNRs about 5 dB; however, it also degrades the
input speech signal at a high SNR of 15 dB. Con—
sequently, we can control the trade—off between
speech distortion and residual noise in the frame
index using §,.

As explained in Section 1, the notse power spectrum
of the MS algorithm estimate is obtained by tracking
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Figure 3. Effect of various 4, values on SNR gains.
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Figure 4. Effect of vartous 9, values on SIG.



the minimum of the noisy speech power spectrum
over a specified window of finite frames. This fact
is illustrated in Figure 5 where babble noise at 10 dB
is followed by speech with white Gaussian noise at
0 dB {8]. There is a definite delay of a finite number
of frames when the SNR changes. We show that the
adaptive thresholds of proposed methed immediately
track the variation of the ratio as the noise power
suddenly increases in Figure 6. If the proposed me—
thod generate speech distortion, we can solve this
problem to decrease the control parameter §,. The
proposed method could arise with residual noise, and
vice versa. Figure 6 shows the improved tracking
capability of the proposed algorithm. Specially, the
speech signal is degraded by highly nonstationary
car noise at 5 dB and white Gaussian noise 0 dB
segmental SNR. The NTFA algorithm is essentially
much faster than that of the MS [6] algorithm in
Figure 5. The separation rule for determining whether
speech 1s present or absent in a frame is based on
the following algorithm:

Ifn) <), 1<i=L as
DLk =IXDE 1= k<K, 1<i=<L  (15)
v 1h, 14 5
D!fu:lm(k"l) = T Z (—‘R;Z‘Dlzwl(k‘l)) (16)
" m=1 k=1
Gupdnln(k!z) = G(kv” * o (17)
else
Dﬁml(kJ) :D;fuaan(kal) (18)
20
' ' 1 [—Estinfeted noise fevel
9 : t 1 | —— Noisyl speech signal
Delayyot MS aigorithm * P - Boradriine
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g =
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carhsd 1 '
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- * Babble 1DdE ' '
%% % 20 0 w0 =0 50 700 0

Frame index
Figure 5. Noisy power spectrum and noise estimate using for
car noise (15 dB and 5 dB), babble noise (10 dB),
white Gaussian noise 0 dB and babble noise 5 dB
in a nonstationary at =625 Hz.

Gopate Fol) = GlRE) » (1= ar) (19)

where gain constant « is set to 0.001, and the gain
function G(k.1) is initially 1.0. This ratio ~,{{) is then
compared to the adaptive threshold ¢(¢). If it is
greater than &(!), then speech is declared to be
present in {—th frame: otherwise speech is absent.
[f the !{-the frame is considered to be a speech
—absence frame, then D2, ,(k!) is set to I—th frame
of the noisy spectrum |X(k,)*. We estimate D?_,(k!)

frames of the noise power spectrum, and DZ__ (k1)
1s calculated by averaging over the frames without
speech. The Dn:;,, (k1) is the assumed estimate of the
residual noise of the speech—frames where speech
is present. Then we represent G, (k!), the updated
gain function in a frame index using the gain {unction
Gk!) and the constant « for the frames in which
speech is absent. If I —th frame are considered to be

frames in which speech is present, then D% (k1) is

nean
set to Of,,(ki), and DF, (k1) is used to reduce the
residual noise of the frames of in the presence of
(1}, the
updated gain function in a frame index, using the gain

speech. Then, we can represents @, ,,.
function &%) and the constant « for the frame in
which speech is absent. As mentioned above, &, (kD)
denotes the updated gain function in a frame index
using the gain function Gik.{) and the constant 1-«

for the frames with speech. & . (k! is used to
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Figure 6. Ratio for adaptive thresholds determined on the time
index for car noise (15 dB and 5 dB), babble noise
10 dB, white noise 0 dB and babble noise 5 dB in
a nonstationary noisy environments.
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remove residual noise in the frame index.
The updated noisy power spectrum X, ,, (kP of
the frame index is the difference between the noisy

power spectrum |X(k!)f and the frames BDZ, (ki) in

which speech is absent, as shown in Equation 20:

X, (KD = Xk DE — D2 (kD) (20)
X ptare (D = MAXGX, g (R, @) (21)
LXRDP =X e (D, 1< k< K, 1<i=< L (22)

Equatton 20 reduces the noise of the frames in
which speech is absent, and Equation 21 is used to

avoid negative values [131.

3.2. Separation of speech and noise in frequency
bins using adaptive thresholds

In a manner parallel to that described bins in the

previous subsection, our method uses an adaptive

algorithm to track the threshold in a frequency bins:

(1) =y (1) +4 (23)
§r=4,(1) « &y (24)
§u=81) « by (25)
ap(k) =gk—1)—yk—1), t=k<K (26)
Foafdk) =8, 1<k<K (27)

5; =§j(k_l) . (1_774)'{'511- * N
elself n, < uf(k) =4

f;=£](k_l) . (1_7?11) RRITAR N
else

£f=£f(k"]) ¢ (1_’7(;)+§ﬂf * ‘Ua

where &(k) is the adaptive threshold set re—
cursively. Equation 23 is the initial value of &(k), and
& and &, are the lower and upper limits of £(k),
respectively. We define control parameter, &, lower
limit constant, &;=05 and upper limit constant,
6;;=20, and can obtain &/{k) using the ratio 7, (k)
and the control parameter é;. In Equation 23, we
estimate the 7,1} the frequency bin of the initial

speech—absence.
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Equation 24 and 25, the lower and upper limits of
¢,(k} are defined by the &(1), d;; and &;,. Then, the
tracking value af(k) calculated as the difference
between the adaptive threshold & (k—1) and the ratio
v,{(k—1). Equation 26 is used to track the adaptive
thresholds £(k). This threshold & (k) is adaptive in
the sense that it changes depending on the tracking
value a,(k). The adaptive threshold ¢;(k) that operate
the prior frame are required; the adaptive thresholds
not use noise power spectrum estimate from the
speech—absence frequency bin. If af(k) is greater
than the control parameter 4, {,(k) decreases using
the lower limit £;, and the weighting constant », =08
for tracking the ratio 4,{(k) between the lower ¢ and
upper limits &, If o,(k) is between n, =0.0 and §,,
&(k) does slightly increases using the upper limit £,
and the weighting constant 5, =0.6. [f a,(k) is less
than the tracking constant n, =00, the threshold
level & (k) increases using the upper limit &, and the
weighting constant », =08 for tracking the ratio (k)
between the ¢, and ¢, Figure 7 shows that the
adaptive threshold accounts for the frequency bin
index by controlling 4.

Figures 8 and 9 show the effect of & on SNR gains
and scale of the SIG. Simulation results indicate that
the optimal vatue of 4, is 0.01 for noisy signals with
SNR 5 through 15 dB. Figure 9 shows that the
adaptive threshold accounts for the frequency bin
index by controlling 4;.

Ratio
- = = Adative threshold

Upper value of threshold (up or down)

~1}f

Lower value of threshold (up or down)

] 20 40 €0 80 100 120 140
Frequency bin

Figure 7. Ratio for adaptive thresholds determined on the
frequency bin index in a nonstationary noisy en-
vironment.
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Figure 9. Effect of various algorithm d; values on SIG.

Then, the decision algorithm for determining if

speech 1s present or absent in a frequency bin is

I ylk)=gk), 1<k K (28)
Crnodi (B0} = G (K1) + (29)
Glkl) = Gy (kid) + a (30)

else

G:m)di(k-‘l) = Q:pdat(:(k‘l) * {l "'a)

3D
Glk,1) = Gy (R}

l<k<K 1=1=<1L (32)

In the same manner as for the time index, if the
ratio n,-f(k) is greater (han the adaptive threshold
&{k), then the bin is declared Lo contain specch;
otherwise speech is absent. G, (k) represents the

modified gain function for the time and frequency bin.
ISk, DP = Glkid) = Xk, 1P (33)

Finally, the estimated clean speech power spectrum

Naise Suppression Using Normalized Time—Frequency Bin Average and Modilied Gain Funclion for Speech Cnhancement in Nonslationary Noisy Environments

I9(k,2)P can be represented as a product of the
modified gain funclion G{k,1) and the updated noisy
power spectrum [X(k,{)P.

The estimated clean speech signal can then be
obtained by the overlap—add method, where the
estimated power spectrum is transformed to the time
domain by the inverse STFT.

IV. Experimental results and discussion

The noisy signals used in our evaluation are taken
from the NOIZEUS database [13]. The speech signals
were spoken by two female and two male speakers.
The analyzed signal was sampled at 8 kHz, and
transformed into the STFT using 50% (128 samples)
overiapping Ilamming windows of 256 samples.

4.1, Segmental SNR

Segmental SNR is measured over short frames and
final resull 1s obtained by averaging the value of each
frame over all the segments. Table 1 shows the
segmental SNR improvement for cach speech enhan—
cement algorithm. For the input SNR range 5—15 dB
for white Gaussian noise, car noise, and babble noise,
we noted that the segmental SNR after processing is
clearly better for the proposed algorithm than that
for the conventional methods [6, 71 under white Gau—
ssian and babble noise environmental conditions. The
NTFA algorithm in particular produces good results

for white Gaussian noise in the range 5 (o 15 dB.

Table 1. Segmental SNR at white, babble and car.

‘Noise (dB) | white babble car
SSMS 5 7.29 6.33 566
10 1162 1068 | 1099
15 1566 15.24 1510 |
WIENERWT 5 1030 | 890 6.14
- 10 14.48 12.25 990 |
15 17.85 16.24 15.19
NTFAS 5 | 1083 843 6.39
10 1475 12.40 11,65
B 15 1828 1590 | 1574
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Figure 10. Example of noise reduction at car noise 5 dB sp
05. wav of male “Wipe the grease off his dirty
face” from the NOIZEUS database using three en-—
hancement algorithm. {a} Original speech; {b) Noisy
speech; {¢) Enhanced speech using SSMS method:
{d) Enhanced speech using WIENERWT method:
{e) Enhanced speech using NTFA method.

Figure 10 shows the results in the 5 dB car noise
environment. The best result for each speech enhan—
cement algorithms is shown in bolds.

For nonstationary noisy environments, the con—
ventional methods worked well for high input SNR
values of 10 and 15 dB; however, their output showed
poor intelligibility for low SNR values of car noise (5
dB) and white noise {0 dB}, and they produced residual
noise and distortion as shown in Figure 11. Figure 11
shows the proposed algorithm’s clear superiority in
a highly nonstationary noisy environment. This outcome
are also confirmed by the time and frequency domain
results of speech enhancement by the three methods
shown in Figure 11. In a Figure 11 {(¢), different
outcome is observed in the waveforms of speech
enhancement by the SSMS method, (d) the WIENERWT
method, and (e} the proposed speech enhancement
the NTFA method. Panels (¢) and {d) in Figure 11
from t52.2s to t<4.5s and at t > 7.8 s show the
presence of residual noise partly due to the inability
of the speech enhancement algorithm to track the
sudden appearance of low SNR noise. In contrast, as
shown in panel (e), the residual noise is clearly
reduced with the proposed speech enhancement

algorithm. The noisy signal compiises five concatenated
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Figure 11. Time domain results of speech enhancement for
car noise at 15 dB, car noise at 5 dB, babble
noise at 10 dB, white noise 0 dB, and babble noise
5 dB SNR in a nonstationary environment. (a}
Original speech; (b} Noisy speech; {c) Enhan-
cement speech using SSMS: {d)Enhancement speech
using WIENERWT: {e)Enhancement speech using
NTFA.

sentences from the NOIZEUS database. The speech
signal were spoken by two male and one female
sentences extracted from the AURORA 2 corpus.

4.2. The iTU-T P.835 Standard

Speech enhancement algorithms typically degrade
the speech signal component while suppressing the
background noise, particularly in low—SNR conditions.
This situation complicates the subjective evaluation
of speech enhancement aigorithm as it is not clear
as to whether listeners base their overall quality
judgments on the signal distortion and noise distortion.
The methodology proposed in [12] reduces the
listener’s uncertainty by requiring them to successively
attend to and rate the waveform on the speech alone,
the noise alone, and the overall effect of speech and
noise on quality, The speech signal alone using a
five—point scale of signal distortion (SIG) [13]. The
proposed method resulted in a great reduction in
noise. It also degraded the speech signal in highly
nonstationary noisy environments. Degradation of

the speech signal is extremely undesirable in real



Table 2. Scale of Signal Distortion (SIG), 5=no¢ degradalion,
4=little degradation, 3=somewhat degraded, 2=fairly
degraded, 1=very degraded.

Noise {dB) white babble car

SSMS 5 1.65 269 322

10 228 375 396

15 296 39 313

WIENERWT 5 243 247 245
10 333 3.79 328

15 383 394 363

NTFA 5 3.07 3.52 3143

10 442 379 362

15 464 394 366

speech recognition systems. Consequently, an auto—
matic noise estimation and separation algorithm is

required. The results of the evaluation are shown in
Table 2.

V., Conclusions

In this paper, we have presented a new speech
enhancement algorithm that is well suited to three
different noise environments. The new algorithm is
based on calculating the ratio of the variance of the
noisy power spectrum in the time—frequency bin to
its normalized time —frequency average. We showed
that appropriate choices of 6, and 8, produced enhanced
speech signal. The proposed method resulted in
significant reduction in noise while providing enhanced
speech with lower residual noise and higher SNR and
SIG scores than the conventional methods. It also
degraded the input speech signal in highly nonsta—
tionary noisy environments. In particular, it produces an
output with improved segment SNR and lower resi—
dual noise for white Gaussian noise. In the future, we
plan to test the robustness of the proposed algorithm
under diverse conditions including live signal en—
vironments,
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