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Abstract

A noise suppression algorithm is proposed for nonstationary noisy environments. The proposed algorithm is different from the 

conventional approaches such as the the spectral subtraction algorithm and the minimum statistics noise estimation algorithm in 

that it classifies speech and noise signals in time-frequency bins. It calculates the ratio of the variance of the noisy power spectrum 

in time-frequency bins to its normalized time-frequency average. If the ratio is greater than an ad^)tive tiireshold, speech is considered 

to be present. Our adaptive algorithm tracks the threshold and controls the trade-off between residual noise and distortion. The 

estimated clean speech power spectrum is obtained by a modified gain function and the updated noisy power spectrum of the 

time-frequency bin. This new algorithm has the advantages of simplicity and light corqjutational load for estimating the noise. 

This algorithm reduces the residual noise significantly, and is superior to the conventional methods.

Keywords: Speech enhancement, Noise reduction, Noise estimator

I. Introduction

Noise suppression is a crucial factor of many 

modern speech communications systems. Generally 

implemented as a preprocessing component, noise 

suppression irrproves the performance of communication 

systems for speech signals corrupted by noise 

through improving the speech quality or intelligi­

bility. As it is difficult to reduce noise without di­

storting the speech, the performance of speech 

enhancement systems is usually a trade-off between 

speech distortion and noise reduction [1].

Current single microphone speech enhancement 

methods belong to two categories, namely, time do­

main methods such as the subspace approach and
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frequency domain methods such as the spectral sub­

traction (SS), minimum mean square error (MMSE) 

estimator [2, 3] and Wiener filter. Both methods 

have their own advantages and drawbacks. The 

subspace methods provide a mechanism to control 

the tradeoff between speech distortion and residual 

noise, but with the cost of heavy computational load.

Frequency domain methods, on the other hand, 

usually consume less computational resources, but 

do not have a theoretically established mechanism 

to control tradeoff between speech distortion and 

residual noise. Among them, spectral subtraction is 

computationally efficient and has a simple mechanism 

to control tradeoff between speech distortion and 

residual noise, but suffers from a notorious artifact 

known as "musical noise” [4, 5]. The MMSE es­

timator and Wiener estimator have moderate computa­

tional load, but have no mechanism to control trade 
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off between speech distortion and residual noise [5].

Recently, various studies have examined noise 

estimation techniques [6, 7, 8, 9, 10]. These methods 

are designed for unknown nonstationary noise signals 

using minimum statistics. Martin proposed an algorithm 

for noise estimation based on minimum statistics [6]. 

The ability to track varying noise levels is a pro­

minent feature of the minimum statistics (K/E) algorithm 

[6]. The main drawback of this method is that it 

takes more time than the duration of the minimum 

—search window to update the noise spectrum when 

the noise level increases suddenly.

Cohen proposed a minima-controlled recursive 

algorithm (MCRA) [9] which updates the noise es­

timate by tracking the noise-only regions of the 

noisy speech spectrum. These regions are found by 

comparing the ratio of the noisy speech to the local 

minimum against a threshold. However, the noise 

estimate delays by at least twice the window length 

when the noise spectrum increases suddenly [8].

Moreover, a disadvantage to most of the noise 

-estimation schemes mentioned above is that residual 

noise is still present in frames in which speech is 

absent. In addition, the estimation of the noise 

spectrum is quite complex.

In this paper, we describe a method to enhance 

speech by improving its overall quality while mini­

mizing residual noise and distortion. The proposed 

algorithm is based on calculating the ratio of the 

variance of the noisy power spectrum in the time~ 

frequency bin to its normalized time-frequency 

average (NTFA) [11]. The algorithm determines 

that speech is present only if the ratio is greater than 

the adaptive threshold. Specifically, our method uses 

an adaptive scheme for tracking the threshold in a 

nonstationary noisy environment to control the trade 

-off between speech distortion and residual noise. 

The algorithm has the advantages of simplicity and 

light computational load for estimating the noise. 

Moreover, this algorithm reduces the residual noise 

significantly. We compare the new algorithm to the 

conventional methods [6, 7]. The segmental signal~ 

to-noise ratio (SNR), and the ITU-T (P.835) sub­

jective measure [12] were compared under various 

noise conditions [13]. We examine the adaptive trac­

king capability for non-stationary environments. We 

show that the performance of the proposed algorithm 

is superior to that of conventional methods.

The structure of the paper is as follows. Section 

2 introduces the overall system model. Section 3 

describes the proposed noise reduction algorithm, 

while Section 4 contains the experimental results 

and discussion. The conclusion in Section 5 looks at 

future research directions for .the algorithm.

II. System model

Assuming that speech and noise are uncorrelated, 

the noisy speech signal x(n) can be represented as

x(n) = s(n) +d(n) (1)

where s(n) is the clean speech signal and d(n) is 

the noise signal. Dividing the signal into overlapping 

frames using a window function and applying the 

short-time Fourier transform (STFT) to each frame 

용ives the time-frequency representation X(知Z)=, 

S(k,l)+D(k,l) where k is the frequency bin index and 

I is the frame index [14]. In a more formal form, the 

noisy spectrum can be represented as

|X(fc,Z)|= X]x(n + ZZ)w(n)e ' " (2)

n = 0

where w is the window function, N is the size of the 

windows and L is the framing step. The power 

spectrum of the noisy speech |X(鄭)卩 can then be 

represented as

1X(眾)|2 = |S(鄭)卩+|刀(鄭)|2 (3)

where |S(A財)卩 is the power spectrum of the clean 

speech signal and \D(k,l)? is the power spectrum of 

the noise signal. The proposed algorithm is summarized 

in the block diagram shown in Fig. 1. It consists of 

seven main components： time-frequency analysis
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x(n)=s(n)+d(n)

Figure 1. Flow diagram of the proposed speech enhancement 

algorithm.

and synthesis, noise power estimate, adaptive threshold, 

separation of speech-presence and absence in time 

-frequency bin, updated noisy power spectrum, and 

modified gain function.

III. Proposed noise reduction algorithm

The noise reduction algorithm is based on the 

variance of the noisy power spectmm in a time and 

frequency-dependent manner as follows：

"Q) = *»x(鄭)I% 妇％) = 5科成(")卩
(4)

1 K
= —S(W^0l2-^(0)2 

k=i
(5)

1
varf(k) = 鄭)卩—印(k))2 (6)

~^varf(k) (7)

vart(l) varf{k)
%(Z)=—亍,7/(fc)=—与一

爾 寸

l<k<K, 1<1<L (8)

where 屁 is the average of noisy power spectrum 

in the frequency bin,印 is the average of noisy power 

spectrum for the frame index, and 就 and 수§ is the 

assumed estimate of noise power. Equation 8 gives 

the ratio of the variance for the noisy power spectrum

Figure 2. Procedure for estimating noise power using the noisy 

power spectrum.

in the time-frequency bin to its normalized time 

-frequency average. In the case of a region where 

a strong speech signal is present, the normalized 

variance calculated by Equation 8 will be high. This 

is generally not true for a region without a speech 

signal. Therefore, we can use the ratio in Equation 

8 to classify the speech—presence and absence in 

the time-frequency bins. Figure 2 shows the model 

for estimating the noise power using the noisy power 

spectrum.

3.1. Separation of speech and noise in frames 

using an adaptive thresholds
Our method uses an adaptive algorithm to track the 

threshold and control the trade-off between speech 

distortion and residual noise：

&(1) =%(1)+句 (9)

&乙=&(1) • StL (10)

&0=&(1) * ^tu (11)

(12)

丑 (13)

&①=§("1) • +&Z • Ca

else IF Cz < at(Z)<(5t,

&(，)=&("D • (i—

else

&(「)=&(—l),(1-<)+&" * C

where &⑴ is the adaptive threshold set recur­

sively. Equation 9 is the initial value of &Q), and 肅
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and are the lower and upper limits of & (Z), 

respectively. We define control parameter, St, lower 

limit constant, 6tL= 0.5 and upper lim辻 constant, 8tu 

=2.0, and can obtain §(1) using the ratio %(1) and 

the control parameter 6t. In Equation 9, we estimate 

the 7((1) for the frame of the initial speech-absence. 

Equation 10 and 11, the lower and upper limits of 

&(Z)are defined by the & (1), 6tL and 8tu. Then, the 

tracking value 히7) calculated as the difference 

between the adaptive thre아lold and the ratio

Equation 12 is used to track the adaptive 

thresholds &Q). This threshold §(Z)is adaptive in 

the sense that it changes depending on the tracking 

value The adaptive threshold &Q) that operate 

the prior frame is required； the adaptive thresholds 

not use noise power spectrum estimate from the 

speech-absence frames such as the SS and MMSE 

[2, 3]. If at(l) is greater than the control parameter 

&(l) decreases using the lower limit 瞞 and the 

weighting constant 4 = 0.8 for tra아dig the ratio 条(I、) 

between the lower &丄 and upper limits 如尸 If at(l) 

is between Q =0.0 and &(Z)does slightly increases 

using the upper limit 膈 and the weighting constant 

G = 0.6. If %(Z) is less than the tracking constant 

G =0.0, the threshold level &(/) increases using the 

upper limit 瞞 and the weighting constant 4 = 0.8 for 

tra아dng the ratio %(Z)between the 肅 and 如尸 

Constants 3y = 0.5,勺。=2.0, q=0.8, § = °,6, and 

= 0.0 are experimental values we used.

In order to improve the balance between the 

speech distortion and residual noise, we show that 

the adaptive threshold allows a trade-off between 

speech distortion and residual noise by controlling dt 

in Figure 3. Figure 3 아lows 난le effect of 6t on SNR 

gains. The output SNR is calculated in a manner 

similar to the input SNR. The noise power is cal­

culated as the power of the speech signal obtained 

by subtracting the filtered speech signal from the 

clean speech signal. Simulation results show that an 

increase in the parameter is good for noisy signals 

with a low SNR of less than 5 dB, and that a decrease 

in 6t is good for noisy signals with a relativ시y high 

SNR of greater than 15 dB. The 6t parameter is set 

to a constant of 0.1 based on initial experiments, but 

a fixed 毎 will clearly not be optimal over a wide 

range of SNRs. For example, setting to 0.25 yields 

high SNR gain at a low input SNR of 5 dB； however, 

it also degrades the inp나t speech signal at a high SNR 

of 15 dB.

Distortion of the original speech signal is ex­

tremely undesirable in real practical environments. 

Second, Figure 4 shows the effect of 缶 on signal 

distortion (SIG) scores. Simulation results show that 

the increase in 6t is beneficial for noisy signals with 

low SNRs about 5 dB； however, it also degrades the 

input speech signal at a high SNR of 15 dB. Con­

sequently, we can control the trade-off between 

speech distortion and residual noise in the frame 

index using 8秋

As explained in Section 1, the noise power spectrum 

of the MS algorithm estimate is obtained by tracking 
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Figure 4. 타feet of various 6t values on SIG.
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the minimum of the noisy speech power spectrum 

over a specified window of finite frames. This fact 

is illustrated in Figure 5 where babble noise at 10 dB 

is followed by speech with white Gaussian noise at 

0 dB [8], There is a definite delay of a finite number 

of frames when the SNR changes. We show that the 

adaptive thresholds of proposed method immediately 

track the variation of the ratio as 산圮 noise power 

suddenly increases in Figure 6. If the proposed me­

thod generate speech distortion, we can solve this 

problem to decrease the control parameter 6t. The 

proposed method could arise with residual noise, and 

vice versa. Figure 6 아lows the improved treking 

capability of the proposed algorithm. Specially, the 

speech signal is degraded by highly nonstationary 

car noise at 5 dB and white Gaussian noise 0 dB 

segmental SNR. The NTFA algorithm is essentially 

much faster than that of the MS [6] algorithm in 

Figure 5. The separation rule for determining whether 

speech is present or absent in a frame is based on 

the following algorithm；

If %(Z) 1<1<L (14)

应如(鄭)=凶鄭)K i<k<K,l<l<L (15) 

處林房,1) = 7、况讪(鄭)) (16)

1 m = l fc=l

Gtpdate(鄭)=G(鄭)* a (17)

else

0氣(鄭)=〃么孔(&，1) (18)

(裁)=G(鄭)•(1 一招 (19)

where gain constant a is set to 0.001, and the gain 

function G(J이，') is initially 1.0. This ratio %(Z)is then 

compared to the adaptive threshold & (Z). If it is 

greater than §(Z), then speech is declared to be 

present in Z~th frame； otherwise speech is absent. 

If the /-the frame is considered to be a speech 

-absence frame, then D^vel(k,l) is set to Z-th frame 

of the noisy spectrum |JT(A：,Z)I2. We estimate D^vel (fc,z) 

frames of the noise power spectrum, and D^ean (fc,i) 

is calculated by averaging over the frames without 

speech. The D^ean (k,i) is the assumed estimate of the 

residual noise of the speech-frames where speech 

is present. Then we represent Gupdate the updated 

gain function in a frame index using the gain function 

G(k,l) and the constant a for the frames in which 

speech is absent. If Z-th frame are considered to be 

frames in which speech is present, then D^ean (k,i) is 

set to D，点 U이) , and D^ean (A；,1) is used to reduce the 

residual noise of the frames of in the presence of 

speech. Then, we can represents Gupdate the 

updated 융ain function in a frame index, using the gain 

function G(k,l) and the constant a for the frame in 

which speech is absent. As mentioned above, Gupdate 

denotes the updated gain function in a frame index 

using the gain function G(k,l) and the constant 1-a 

for the frames with speech. Gupdate is used to 

Figure 6. Ratio for adaptive thresholds determined on the time 

index for car noise (15 dB and 5 dB), babble noise 

10 dB, white noise 0 dB and babble noise 5 dB in 

a nonstationary noisy environments.

Fig니re 5. Noisy power spectrum and noise estimate using for 

car noise (15 dB and 5 dB), babble noise (10 dB), 

white Gaussian noise 0 dB and babble noise 5 dB

in a nonstationary at f=625 H乙
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remove residual noise in the frame index.

The updated noisy power spectrum \^update(k^ of 

the frame index is the difference between the noisy 

power spectrum 1x(政)卩 and the frames d^ve1 in 

which speech is absent, as shown in Equation 20：

心 (晾)『니 x(k,z)|2 —底,心) (20)

氐呻％，屛="4刈也血(裁)I% a) (21)

1X(鄭)|2 = KWe(fc,Z)|2 ,l<k<K,l<l<L (22)

Equation 20 reduces the noise of the frames in 

which speech is absent, and Equation 21 is used to 

avoid negative values [13].

32 Separation of speech and noise in frequency 

bins 니sing adaptive thresholds
In a manner parallel to that described bins in the 

previous subsection, our method uses an adaptive 

algorithm to track the threshold in a frequency bins：

§(1)=方(1)+马 (23)

= §⑴ , (24)

§77= §⑴• 8* (25)

%(北)=§(*一1)—为(％—1), 1 < k< K (26)

If af(k) > l<k<K (27)

elself T]z < %(k) > %

戻一1).(1 —仇)・ ％

else

・(l-7?a)+^ ・ ％

Equation 24 and 25, the lower and upper limits of 

§(&) are defined by the §(1),金 and 8卩厂 Then, the 

tracking value af(k) calculated as the difference 

between the adaptive threshold and the ratio

7z(fc-l). Equation 26 is used to track the adaptive 

thresholds This threshold is adaptive in 

the sense that it changes depending on the tracking 

value af(k). The adaptive threshold §(k) that operate 

the prior frame are required； the adaptive thresholds 

not use noise power spectrum estimate from the 

speech-absence frequency bin. If af(k) is greater 

than the control parameter 6f, §(&) decreases using 

the lower limit and the weighting constant 7?a =0.8 

for tracking the ratio 为Jk) between the lower ^fL and 

upper limits &寸廿 ％(&)is between r)z =0.0 and 6f, 

Rk) does slightly increases using the upper limit 顷 

and the weighting constant r)b = 0.G. If is less 

than the tracking constant r)z =0.0, the threshold 

level §(k) increases using the upper limit 顷 and the 

weighting constant % =0.8 for tracking the ratio yf(k) 

between the §伍 and &计 Figure 7 shows that the 

adaptive threshold accounts for the frequency bin 

index by controlling 8扩

Figures 8 and 9 show the effect of 6f on SNR gains 

and scale of the SIG. Simulation results indicate that 

the optimal value of is 0.01 for noisy signals with 

SNR 5 through 15 dB. Figure 9 아lows that the 

adaptive threshold accounts for the frequency bin 

index by controlling 6f.

where §戻)is the adaptive threshold set re­

cursively. Equation 23 is the initial value of §(&), and 

5 and 饥 are the lower and upper limits of §值)， 

respectively. We define control parameter,缶，lower 

limit constant, & = 0.5 and upper limit constant, 

物=2.0, and can obtain §(&) using the ratio 笥(k) 

and the control parameter 叫,In Equation 23, we 

estimate the rf(X) the frequency bin of the initial 

speech-absence.

Figure 7. Ratio for adaptive thresholds determined on the 

freq니이icy bin index in a nonstationary noisy en­

vironment.
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Figure 8. Effect of va「io니s algorithm 6f values on SNR gains.

Figure 9. Effect 아 various algorithm 6f values on SIG.

Then, the decision algorithm for determining if 

speech is present or absent in a frequency bin is

If Mk) ME l<k<K (28)

G編•(鄭)=G"血e (財• a (29)

G&l) = Gm요・ a (30)

else

^modi (k,l) — Gupdate(k,l) • (l~a)

z 、 (31)
G(晾)=%淑(鄭)

l<k<K, 1<1<L (32)

In the same manner as for the time index, if the 

ratio %(&) is greater than the adaptive threshold 

§(k), then the bin is declared to contain speech； 

otherwise speech is absent. 6^odi(fc,/) represents the 

modified gain function for the time and frequency bin.

顷晾)|2 = g(鄭)・ |X(眾)|2 (33)

Finally, the estimated clean speech power spectrum 

|&&)卩 can be represented as a product of the 

modified gain function G(k,l) and the updated noisy 

power spectrum \X(k,l)?.

The estimated clean speech signal can then be 

obtained by the overlap-add method, where the 

estimated power spectrum is transformed to the time 

domain by the inverse STFT.

IV. Experimental results and discussion

The noisy signals used in our evaluation are taken 

from the NOIZEUS database [13]. The speech signals 

were spoken by two female and two male speakers. 

The analyzed signal was sampled at 8 kHz, and 

transformed into the STFT using 50% (128 samples) 

overlapping Hamming windows of 256 samples.

4.1. Segmental SNR
Segmental SNR is measured over short frames and 

final result is obtained by averaging the value of each 

frame over all the segments. Table 1 shows the 

segmental SNR improvement for each speech enhan­

cement algorithm. For the input SNR range 5-15 dB 

for white Gaussian noise, car noise, and babble noise, 

we noted that the segmental SNR after processing is 

clearly better for the proposed algorithm than that 

for the conventional methods [6, 7] under white Gau­

ssian and babble noise environmental conditions. The 

NTFA algorithm in particular produces good results 

for white Gaussian noise in the range 5 to 15 dB.

Table 1. Segmental SNR at white, babble and car.

Noise (dB) white babble car

SSMS 5 7.29 6.33 5.66

10 11.62 10.68 10.99

15 15.66 15.24 15.10

WIENERWT 5 10.30 8.90 6.14

10 14.48 12.25 9.90

15 17.85 16.24 15.19

HTFAS 5 10.83 8.43 6.39

10 14.75 12.40 11.65

15 18.28 15.90 15.74
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Figure 10. Example of noise reduction at car noise 5 dB sp 

05. wav of male “Wipe the grease off his dirty 

face" from the NOIZEUS database using three en­

hancement algorithm, (a) Original speech; (b) Noisy 

speech; (c) Enhanced speech using SSMS method;

(d) Enhanced speech using WIENERWT method；

(e) Enhanced speech using NTFA method.

Figure 10 shows the results in the 5 dB car noise 

environment. The best result for each speech enhan­

cement algorithms is shown in bolds.

For nonstationary noisy environments, the con­

ventional methods worked well for high input SNR 

values of 10 and 15 dB； however, their output showed 

poor intelligibility for low SNR values of car noise (5 

dB) and white noise (0 dB), and they produced residual 

noise and distortion as shown in Figure 11. Figure 11 

shows the proposed algorithm's clear superiority in 

a highly nonstationary noisy environment. This outcome 

are also confirmed by the time and frequency domain 

res나Its of speech enhancement by the three methods 

shown in Figure 11. In a Figure 11 (c), different 

outcome is observed in the waveforms of speech 

enhancement by the SSMS method, (d) the WIENERWT 

method, and (e) the proposed speech enhancement 

the NTFA method. Panels (c) and (d) in Figure 11 

from t>2.2s to t<4.5s and at t > 7.8 s show the 

presence of residual noise partly due to the inability 

of the speech enhancement algorithm to track the 

sudden appearance of low SNR noise. In contrast, as 

shown in panel (e), the residual noise is clearly 

reduced with the proposed speech enhancement 

algorithm The noisy signal comprises five concatenated

4 6 8 10 12
Time (s)

(e)

Time (s)

Figure 11. Time domain results of speech enhancement for 

car noise at 15 dB, car noise at 5 dB, babble 

noise at 10 dB, white noise 0 dB, and babble noise 

5 dB SNR in a nonstationary environment, (a) 

Original speech; (b) Noisy speech; (c) Enhan­

cement speech using SSMS； (d)Enhancement speech 

using WIENERWT; (e)Enhancement speech using 

NTFA.

sentences from the NOIZEUS database. The speech 

signal were spoken by two male and one female 

sentences extracted from the AURORA 2 corpus.

4.2. The ITU-T P.835 Standard
Speech enhancement algorithms typically degrade 

the speech signal component while suppressing the 

background noise, particularly in low-SNR conditions. 

This situation complicates the subjective evaluation 

of speech enhancement algorithm as it is not clear 

as to whether listeners base their overall quality 

judgments on the signal distortion and noise distortion. 

The methodology proposed in [12] reduces the 

listener's uncertainty by requiring them to successively 

attend to and rate the waveform on the speech alone, 

the noise alone, and the overall effect of speech and 

noise on quality. The speech signal alone using a 

five-point scale of signal distortion (SIG) [13]. The 

proposed method resulted in a great reduction in 

noise. It also degraded the speech signal in highly 

nonstationary noisy environments. Degradation of 

the speech signal is extremely undesirable in real
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Table 2. Scale of Signal Distortion (SIG), 5=no degradation, 

4드little degradation, 3=somewhat degraded, 2=fairly 

degraded, 1 =very degraded.

Noise (dB) white babble car

SSMS 5 1.65 2.69 3.22

10 2.28 3.75 3.96

15 2.96 3.90 3.13

WIENERWT 5 2.43 2.47 2.45

10 3.33 3.79 3.28

15 3.83 3.94 3.63

NTFA 5 3.07 3.52 3.13

10 4.42 3.79 3.62

15 4.64 3.94 3.66

speech recognition systems. Consequently, an auto­

matic noise estimation and separation algorithm is 

required. The results of the evaluation are shown in 

Table 2.

V. Conclusions

In this paper, we have presented a new speech 

enhancement algorithm that is well suited to three 

different noise environments. The new algorithm is 

based on calculating the ratio of the variance of the 

noisy power spectrum in the time-frequency bin to 

its normalized time-frequency average. We showed 

that appropriate choices of and produced enhanced 

speech signal. The proposed method resulted in 

significant reduction in noise while providing enhanced 

speech with lower residual noise and higher SNR and 

SIG scores than the conventional methods. It also 

degraded the input speech signal in highly nonsta- 

tionary noisy environments. In particular, it produces an 

output with improved segment SNR and lower resi­

dual noise for white Gaussian noise. In the future, we 

plan to test the robustness of the proposed algorithm 

under diverse conditions including live signal en­

vironments.
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