• Title/Summary/Keyword: Spectral Information Entropy

Search Result 24, Processing Time 0.029 seconds

Speech Emotion Recognition Based on GMM Using FFT and MFB Spectral Entropy (FFT와 MFB Spectral Entropy를 이용한 GMM 기반의 감정인식)

  • Lee, Woo-Seok;Roh, Yong-Wan;Hong, Hwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.99-100
    • /
    • 2008
  • This paper proposes a Gaussian Mixture Model (GMM) - based speech emotion recognition methods using four feature parameters; 1) Fast Fourier Transform(FFT) spectral entropy, 2) delta FFT spectral entropy, 3) Mel-frequency Filter Bank (MFB) spectral entropy, and 4) delta MFB spectral entropy. In addition, we use four emotions in a speech database including anger, sadness, happiness, and neutrality. We perform speech emotion recognition experiments using each pre-defined emotion and gender. The experimental results show that the proposed emotion recognition using FFT spectral-based entropy and MFB spectral-based entropy performs better than existing emotion recognition based on GMM using energy, Zero Crossing Rate (ZCR), Linear Prediction Coefficient (LPC), and pitch parameters. In experimental Results, we attained a maximum recognition rate of 75.1% when we used MFB spectral entropy and delta MFB spectral entropy.

  • PDF

Vocal Effort Detection Based on Spectral Information Entropy Feature and Model Fusion

  • Chao, Hao;Lu, Bao-Yun;Liu, Yong-Li;Zhi, Hui-Lai
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.218-227
    • /
    • 2018
  • Vocal effort detection is important for both robust speech recognition and speaker recognition. In this paper, the spectral information entropy feature which contains more salient information regarding the vocal effort level is firstly proposed. Then, the model fusion method based on complementary model is presented to recognize vocal effort level. Experiments are conducted on isolated words test set, and the results show the spectral information entropy has the best performance among the three kinds of features. Meanwhile, the recognition accuracy of all vocal effort levels reaches 81.6%. Thus, potential of the proposed method is demonstrated.

A Study on the Realization of Wireless Home Network System Using High-performance Speech Recognition in Variable Position (가변위치 고음성인식 기술을 이용한 무선 홈 네트워크 시스템 구현에 관한 연구)

  • Yoon, Jun-Chul;Choi, Sang-Bang;Park, Chan-Sub;Kim, Se-Yong;Kim, Ki-Man;Kang, Suk-Youb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.991-998
    • /
    • 2010
  • In realization of wireless home network system using speech recognition in indoor voice recognition environment, background noise and reverberation are two main causes of digression in voice recognition system. In this study, the home network system resistant to reverberation and background noise using voice section detection method based on spectral entropy in indoor recognition environment is to be realized. Spectral subtraction can reduce the effect of reverberation and remove noise independent from voice signal by eliminating signal distorted by reverberation in spectrum. For effective spectral subtraction, the correct separation of voice section and silent section should be accompanied and for this, improvement of performance needs to be done, applying to voice section detection method based on entropy. In this study, experimental and indoor environment testing is carried out to figure out command recognition rate in indoor recognition environment. The test result shows that command recognition rate improved in static environment and reverberant room condition, using voice section detection method based on spectral entropy.

Robust Entropy Based Voice Activity Detection Using Parameter Reconstruction in Noisy Environment

  • Han, Hag-Yong;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.205-208
    • /
    • 2003
  • Voice activity detection is a important problem in the speech recognition and speech communication. This paper introduces new feature parameter which are reconstructed by spectral entropy of information theory for robust voice activity detection in the noise environment, then analyzes and compares it with energy method of voice activity detection and performance. In experiments, we confirmed that spectral entropy and its reconstructed parameter are superior than the energy method for robust voice activity detection in the various noise environment.

Reconstruction Effect of the Spectral Entropy for the Voice Activity Detection (음성 활동 구간 검출을 위한 스펙트랄 엔트로피의 재구성 효과)

  • Kwon HO-Min;Han Hag-Yong;Lee Kwang-Seok;Koh Si-Young;Hur Kang-In
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.25-28
    • /
    • 2002
  • Voice activity detection is important Problem in the speech recognition and communication. This paper introduces feature parameter which is reconstructed by the spectral entropy of information theory for the robust voice activity detection in the noise environment, analyzes and compares it with the energy method of voice activity detection and performance. In experiment, we confirmed that the spectral entropy is more feature parameter than the energy method for the robust voice activity detection in the various noise environment.

  • PDF

Performance Enhancement of Speech Communication System using Reverberation Rejection (잔향제거를 이용한 음성통신 시스템 성능 향상)

  • Kim, Se-Young;Kang, Suk-Youb;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2211-2217
    • /
    • 2009
  • In this paper, we propose the speech enhancement algorithm using an one-microphone in a reverberant room environments. Spectral subtraction is the effective method which can reduce the reverberation element and the noise in a spectrum domain. Spectral subtraction needs correct separation of voice section and silent section therefore to improve the performance, voice activity detection(VAD) based on entropy has been applied to the proposed method. We test a performance of the proposed method by comparing with conventional method which used VAD based on energy detection. Reverberation reduction ratio with variable of SNR and a reverberation time is used as a test index. From the simulation result, proposed method shows performance better than conventional method.

Robust Voice Activity Detection in Noisy Environment Using Entropy and Harmonics Detection (엔트로피와 하모닉 검출을 이용한 잡음환경에 강인한 음성검출)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.169-174
    • /
    • 2010
  • This paper explains end-point detection method for better speech recognition rates. The proposed method determines speech and non-speech region with the entropy and the harmonic detection of speech. The end-point detection using entropy on the speech spectral energy has good performance at the high SNR(SNR 15dB) environments. At the low SNR environment(SNR 0dB), however, the threshold level of speech and noise varies, so the precise end-point detection is difficult. Therefore, this paper introduces the end-point detection methods which uses speech spectral entropy and harmonics. Experiment shows better performance than the conventional entropy methods.

Hyperbolic Reaction-Diffusion Equation for a Reversible Brusselator: Solution by a Spectral Method

  • 이일희;김광연;조웅인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 1999
  • Stability characteristics of hyperbolic reaction-diffusion equations with a reversible Brusselator model are investigated as an extension of the previous work. Intensive stability analysis is performed for three important parameters, Nrd, β and Dx, where Nrd is the reaction-diffusion number which is a measure of hyperbolicity, β is a measure of reversibility of autocatalytic reaction and Dx is a diffusion coefficient of intermediate X. Especially, the dependence on Nrd of stability exhibits some interesting features, such as hyperbolicity in the small Nrd region and parabolicity in the large Nrd region. The hyperbolic reaction-diffusion equations are solved numerically by a spectral method which is modified and adjusted to hyperbolic partial differential equations. The numerical method gives good accuracy and efficiency even in a stiff region in the case of small Nrd, and it can be extended to a two-dimensional system. Four types of solution, spatially homogeneous, spatially oscillatory, spatio-temporally oscillatory and chaotic can be obtained. Entropy productions for reaction are also calculated to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy production changes discontinuously and it shows that different structures of the system have different modes in the dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy production in each structure give no important information related for states of system itself.

SPATIO-SPECTRAL MAXIMUM ENTROPY METHOD: II. SOLAR MICROWAVE IMAGING SPECTROSCOPY

  • Bong, Su-Chan;Lee, Jeong-Woo;Gary Dale E.;Yun Hong-Sik;Chae Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.445-462
    • /
    • 2005
  • In a companion paper, we have presented so-called Spatio-Spectral Maximum Entropy Method (SSMEM) particularly designed for Fourier-Transform imaging over a wide spectral range. The SSMEM allows simultaneous acquisition of both spectral and spatial information and we consider it most suitable for imaging spectroscopy of solar microwave emission. In this paper, we run the SSMEM for a realistic model of solar microwave radiation and a model array resembling the Owens Valley Solar Array in order to identify and resolve possible issues in the application of the SSMEM to solar microwave imaging spectroscopy. We mainly concern ourselves with issues as to how the frequency dependent noise in the data and frequency-dependent variations of source size and background flux will affect the result of imaging spectroscopy under the SSMEM. We also test the capability of the SSMEM against other conventional techniques, CLEAN and MEM.

A study on monitoring of fatigue using the $2^{nd}$ order maximum entropy method ($2^{nd}$ order maximum entropy method를 이용한 근피로도의 측정에 관한 연구)

  • Cho, S.J.;Kim, M.S.;Lee, K.W.;Kim, K.G.;Kim, S.L.;Park, H.S.;Lee, K.M.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.47-50
    • /
    • 1990
  • In this study, the degree of spectral transfer to lower frequency caused by accumulation of Latic acid inside the muscle is estimated the convintional dip analysis, zero-crossing method and FFT method have intrinsic errors and estimation problems in case of severe noise. The new spectral analysis method using "$2^{nd}$ order Maximum Entropy Method" was applied to estimate mean frequency and we confirmed that this new method yields fast and reliable estimation over the FFT method.

  • PDF