• Title/Summary/Keyword: Spectral Emissivity

Search Result 34, Processing Time 0.02 seconds

Effects of MnO_2$ Additives on the Characteristics of Infrared Radiator of Cordierite System (Cordierite계 적외선 방사체의 제특성에 미치는 MnO_2$의 영향)

  • 최두선;신용덕
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.975-980
    • /
    • 1994
  • The thermal properties of cordierite (2MgO.2Al2O3.5SiO2)+30 wt% clay+ Xwt% MnO2 of infrared radiator have been investigated as a function of MnO2 additives (X=0,0.1,0.25,0.5,1.0,1.5,2.0,2.5). The thermal expansion coefficient was decreased with increasing amounts of MnO2 additives. Otherwise, the spectral emissivity was increased in the below 4.5 ${\mu}{\textrm}{m}$ wavelength. Also, the infrared radiator of cordierite system which spectral emissivity was approximately 1.0 can be attainable at from 4.5 ${\mu}{\textrm}{m}$ to 8 ${\mu}{\textrm}{m}$ wavelength. The spectral emissivity was decreased from 8 ${\mu}{\textrm}{m}$ to 14 ${\mu}{\textrm}{m}$ above X=2.5.

  • PDF

Effects of $MnO_2$ additives on the thermal properties of infrared radiator of Cordierite system (Cordierite계 적외선 방사체의 제 특성에 미치는 $MnO_2$의 영향)

  • Kang, Yi-Kuk;Shin, Yeong-Duck
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1317-1319
    • /
    • 1994
  • The thermal properties of Cordierite$(2MgO.2Al_2O_3.5SiO_2)$ + 30 [wt%]clay + X[wt%]MnO_2$ of infrared radiator have been investigated as a function of $MnO_2$ additives (X=0, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5). The thermal expansion coefficient was decreased and the spectral emissivity was increased only in the below $4.5{\mu}m$ wavelength with increasing amaunts(wt%) of $MnO_2$ additives. Also, the infrared radiator of Cordierite system which spectral emissivity was approximately 1.0 can be attainable at from $4.5{\mu}m$ to $8{\mu}m$ wavelength. The spectral emissivity was decreased from $8{\mu}m$ to $14{\mu}m$ at X=2.5.

  • PDF

WSGGM-Based Spectral Modeling for Radiation Properties of Combustion Products (회체가스중합모델에 기초한 연소가스의 파장별 복사 성질)

  • Kim, Ook Joong;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.628-636
    • /
    • 1999
  • This work describes the low-resolution spectral modeling of the water vapor, carbon dioxide and their mixtures by applying the weighted-sum-of-gray-gas-gases model (WSGGM) to each narrow band. Proper modeling scheme of gray gas absorption coefficients vs temperature relation is suggested. Comparison between the modeled emissivity calculated from this relation and the 'true' emissivity obtained from the high temperature statistical narrow band parameters is made for a few typical narrow bands. Low resolution spectral intensities from one-dimensional layers are also obtained and examined for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with several gray gases. The results are compared with the narrow band spectral intensities obtained by a narrow band model-based code with Curtis-Godson approximation. Good agreement is found between them. Data bases including optimized modeling parameters and total and low-resolution spectral weighting factors are developed for water vapor, carbon dioxide and their mixtures. This model and obtained data bases, available from the authors' Internet site, can be appropriately applied to any radiative transfer equation solver.

A study on the wsggm-based spectral modeling of radiation properties of water vapor (회체가스중합법에 의한 수증기의 파장별 복사물성치 모델에 관한 연구)

  • Kim, Uk-Jung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3371-3380
    • /
    • 1996
  • Low resolution spectral modeling of water vapor is carried out by applying the weighted-sum-of-gray-gases model (WSGGM) to a narrow band. For a given narrow band, focus is placed on proper modeling of gray gas absorption coefficients vs. temeprature relation used for any solution methods for the Radiative Transfer Equation(RTE). Comparison between the modeled emissivity and the "true" emissivity obtained from a high temperatue statistical narrow band parameters is made ofr the total spectrum as well as for a few typical narrow bands. Application of the model to nonuniform gas layers is also made. Low resolution spectral intensities at the boundary are obtained for uniform, parabolic and boundary layer type temeprature profiles using the obtained for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with 9 gray gases. The results are compared with the narrow band spectral intensities as obtained by a narrow band model-based code with the Curtis-Godson approximation. Good agreement is found between them. Local heat source strength and total wall heat flux are also compared for the cases of Kim et al, which again gives promising agreement.

Construction and Measurement of Normal Spectral Emissivity Device using Fourier Transform Infrared Spectrometer (퓨리에 변환 적외선 분광기를 이용한 수직 분광 복사율 측정 장치의 제작과 측정)

  • Jeon, Sang-Ho;Yoo, Nam-Joon;Jo, Jae-Heung;Park, Chul-Woung;Park, Seung-Nam;Lee, Geun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.400-407
    • /
    • 2008
  • An Instrument to measure normal spectral emissivity is built using a Fourier Transform-Infrared (FT-IR) spectrometer. The instrument is composed of four main parts, reference blackbody, sample furnace, optics system, and FT-IR spectrometer. Measurement ranges of temperature and wavelength are $200^{\circ}C{\sim}500^{\circ}C$ and $3.5{\mu}m{\sim}20{\mu}m$, respectively. Measured emissivity of the reference blackbody is greater than 0.9993 with combined relative uncertainty less than 0.69%, which can be considered an ideal blackbody. We studied the emissivity of opaque alumina, graphite, anodized aluminum, and steel (IMS 200). It is shown that emissivity increases with the roughness of the steel (IMS 200) surface.

Calculation of Surface Broadband Emissivity by Multiple Linear Regression Model (다중선형회귀모형에 의한 지표면 광대역 방출율 산출)

  • Jo, Eun-Su;Lee, Kyu-Tae;Jung, Hyun-Seok;Kim, Bu-Yo;Zo, Il-Sung
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.269-282
    • /
    • 2017
  • In this study, the surface broadband emissivity ($3.0-14.0{\mu}m$) was calculated using the multiple linear regression model with narrow bands (channels 29, 30, and 31) emissivity data of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System Terra satellite. The 307 types of spectral emissivity data (123 soil types, 32 vegetation types, 19 types of water bodies, 43 manmade materials, and 90 rock) with MODIS University of California Santa Barbara emissivity library and Advanced Spaceborne Thermal Emission & Reflection Radiometer spectral library were used as the spectral emissivity data for the derivation and verification of the multiple linear regression model. The derived determination coefficient ($R^2$) of multiple linear regression model had a high value of 0.95 (p<0.001) and the root mean square error between these model calculated and theoretical broadband emissivities was 0.0070. The surface broadband emissivity from our multiple linear regression model was comparable with that by Wang et al. (2005). The root mean square error between surface broadband emissivities calculated by models in this study and by Wang et al. (2005) during January was 0.0054 in Asia, Africa, and Oceania regions. The minimum and maximum differences of surface broadband emissivities between two model results were 0.0027 and 0.0067 respectively. The similar statistical results were also derived for August. The surface broadband emissivities by our multiple linear regression model could thus be acceptable. However, the various regression models according to different land covers need be applied for the more accurate calculation of the surface broadband emissivities.

A Study on Prediction of Surface Temperature and Reduction of Infrared Emission from a Naval Ship by Considering Emissivity of Funnel in the Mid-Latitude Meterological Conditions (중위도 기상조건에서 함정의 연돌 방사율을 고려한 적외선 복사량 예측 및 감소방안 연구)

  • Gil, Tae-Jun;Choi, Jun-Hyuk;Cho, Yong-Jin;Kim, Tae-Kuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.40-47
    • /
    • 2007
  • This study is focused on developing a software that predicts the temperature distribution and infrared Emission from 30 objects considering the solar radiation through the atmosphere. The solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code. Surface temperature information is essential for generating the infrared scene of the object. Predictions of the transient surface temperature and the infrared emission from a naval ship by using the software developed here show fairly good results by representing the typical temperature and emitted radiance distributions expected for the naval ship considered in mid latitude. Emissivity of each material is appeared to be an important parameter for recognizing the target in Infrared band region. The numerical results also show that the low emissivity surface on the heat source can be helpful in reducing the IR image contrast as compared to the background sea.

Multiwavelength Millimeter Observations of Dense Cores in the L1641 Cloud

  • Choi, Minho;Kang, Miju;Lee, Jeong-Eun;Kang, Sung-Ju;Kwon, Jungmi;Cho, Jungyeon;Yoo, Hyunju;Park, Geumsook;Lee, Youngung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.55.3-55.3
    • /
    • 2017
  • The L1641 cloud in Orion is an active site of star formation. We mapped a square region of 60 arcmin by 60 arcmin in the continuum emission from 0.89 mm to 2.0 mm wavelength using MUSIC mounted on the Caltech Submillimeter Observatory 10.4 m telescope. Eight sources were detected in at least two wavelength bands, and all the detected emission comes from thermal dust continuum radiation of dense cloud cores. Their spectral energy distributions were characterized. The dust emissivity spectral index is beta = 1.3 on average, within the range of typical cores in nearby star-forming regions. Two cores, V380 Ori NE and HH 34 MMS, have unusually low emissivity index of beta = 0.3. These cores may contain millimeter-sized dust grains, which suggests that the lifetime of some dense cores can be much longer than the free-fall timescale.

  • PDF

Improvement of COMS Land Surface Temperature Retrieval Algorithm

  • Hong, Ki-Ok;Suh, Myoung-Seok;Kang, Jeon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.507-515
    • /
    • 2009
  • Land surface temperature (LST) is a key environmental variable in a wide range of applications, such as weather, climate, hydrology, and ecology. However, LST is one of the most difficult surface variables to observe regularly due to the strong spatio-temporal variations. So, we have developed the LST retrieval algorithm from COMS (Communication, Ocean and Meteorological Satellite) data through the radiative transfer simulations under various atmospheric profiles (TIGR data), satellite zenith angle (SZA), spectral emissivity, and surface lapse rate conditions using MODTRAN 4. However, the LST retrieval algorithm has a tendency to overestimate and underestimate the LST for surface inversion and superadiabatic conditions, respectively. To minimize the overestimation and underestimation of LST, we also developed day/night LST algorithms separately based on the surface lapse rate (local time) and recalculated the final LST by using the weighted sum of day/night LST. The analysis results showed that the quality of weighted LST of day/night algorithms is greatly improved compared to that of LST estimated by original algorithm regardless of the surface lapse rate, spectral emissivity difference (${\Delta}{\varepsilon}$) SZA, and atmospheric conditions. In general, the improvements are greatest when the surface lapse rate and ${\Delta}{\varepsilon}$ are negatively large (strong inversion conditions and less vegetated surface).

Recent Advances in Passive Radiative Cooling: Material Design Approaches

  • Heegyeom Jeon;Youngjae Yoo
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.22-33
    • /
    • 2024
  • Passive radiative cooling is a promising technology for cooling objects without energy input. Passive radiative cooling works by radiating heat from the surface, which then passes through the atmosphere and into space. Achieving efficient passive radiative cooling is mainly accomplished by using materials with high emissivity in the atmospheric window (8-13 ㎛). Research has shown that polymers tend to exhibit high emissivity in this spectral range. In addition to elastomers, other materials with potential for passive radiative cooling include metal oxides, carbon-based materials, and polymers. The structure of a passive radiative cooling device can affect its cooling performance. For example, a device with a large surface area will have a greater amount of surface area exposed to the sky, which increases the amount of thermal radiation emitted. Passive radiative cooling has a wide range of potential applications, including building cooling, electronics cooling, healthcare, and transportation. Current research has focused on improving the efficiency of passive radiative cooling materials and devices. With further development, passive radiative cooling can significantly affect a wide range of sectors.