• Title/Summary/Keyword: Spectral Density Function

Search Result 221, Processing Time 0.031 seconds

The Numerical Simulation of Muti-directional Wasves and Statistical Investigation (다방향파의 수치시뮬레이션 및 통계적 검토)

  • 송명재;조효제;이승건
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.114-120
    • /
    • 1993
  • Responses of marine vehicles and ocean structures in a seaway can be predicted by applying the probabilistic approach. When we consider a linear system, the responses in a random seaway can be evaluated through spectral analysis in the frequency domain. But when we treat nonlinear system in irregular waves, it is necessary to get time history of waves. In the previous study we introduced one-directional waves (long crested waves)as wave environment and carried out calculations and experiments in the waves. But the real sea in which marine vehicles and structures are operated has multi-directional waves (short crested waves). It is important to get a simulated random sea and analyse dynamic problems in the sea. We need entire sample function or probabillty density function to infer statistical value of random process. However if the process are ergodic process, we can get statistical values by analysis of one sample function. In this paper, we developed the simulation technique of multi-directional waves and proved that the time history given by this method keep ergodic characteristics by the statistical analysis.

  • PDF

Analysis method for the Measured Track Geometry Data using Wavelet Transform (웨이브렛 변환을 이용한 궤도틀림 분석)

  • Lee, In-Kyu;Kim, Sung-Il;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.187-192
    • /
    • 2006
  • The regularity of railway track alignment is a crucial component fur maintaining travel safety and the smoothness of passenger ride. The conventional spectral analysis has been considered to estimate the severity of the track irregularity from measured data. The time domain data used to be changed into the frequency domain by Fourier transform. Because the measuring points can be regarded as the time points, the spatial-frequency can be introduced instead of the time-frequency. Although FFT(Fast Fourier Transform) and/or PSD(Power Spectral Density) function could provide fairly localized information within frequency domain, but chronical configurations of data could be missed. In this study, we attempt to apply the Morlet wavelet transform for the purpose of a frequency-time-domain analysis rather than a frequency-domain analysis. The applicability of wavelet transform is examined for the estimation of the track irregularity with real measured track data on the section of Kyoung-bu line by EM-120 measuring vehicle. It is shown that the wavelet transform can be an effective tool to manage the track irregularity.

NMR Solvent Peak Suppression by Piecewise Polynomial Truncated Singular Value Decomposition Methods

  • Kim, Dae-Sung;Lee, Hye-Kyoung;Won, Young-Do;Kim, Dai-Gyoung;Lee, Young-Woo;Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.967-970
    • /
    • 2003
  • A new modified singular value decomposition method, piecewise polynomial truncated SVD (PPTSVD), which was originally developed to identify discontinuity of the earth's radial density function, has been used for large solvent peak suppression and noise elimination in nuclear magnetic resonance (NMR) signal processing. PPTSVD consists of two algorithms of truncated SVD (TSVD) and L₁ problems. In TSVD, some unwanted large solvent peaks and noise are suppressed with a certain soft threshold value, whereas signal and noise in raw data are resolved and eliminated in L₁ problems. These two algorithms were systematically programmed to produce high quality of NMR spectra, including a better solvent peak suppression with good spectral line shapes and better noise suppression with a higher signal to noise ratio value up to 27% spectral enhancement, which is applicable to multidimensional NMR data processing.

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

Analysis of RP Power Amplifier Nonlinearity and BER Characteristics for Multi­Carrier Transmission System (다중반송 전송시스템을 위한 RF 전력증폭기의 비선형 특성과 BER관계 분석)

  • 신동환;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1612-1620
    • /
    • 2003
  • This papers describes a nonlinear transfer function modelling of designed GaAs FET power amplifier by measured and simulated values of designed PA amplifier for multi­carrier transmission system, With the results of PA nonlinearity characteristic, we can estimates AM­AM and AM­PM of designed PA. According to the estimated nonlinear characteristics, we can analysis the ACPR of PA for spectral regrowth, the error vector measurement(EVM) of constallation signals and bit error rate of QPSK and 64­QAM. The suggested nonlinear modelling results are used to get an accurate estimate of digital characteristics between PA amplifier and wireless multi­carrier transmission system using OFDM.

An NMR Study on Molecular Motions of $\alpha$,2,6-Trichlorotoluene in Solution State

  • Ahn, Sang-Doo;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.553-559
    • /
    • 1994
  • Dynamics of $CH_2CI$ group in ${\alpha},2,6$-trichlorotoluene dissolved in $CDCl_3$ was studied by observing various relaxation modes for $^{13}C$ under proton undecoupled condition. Partially relaxed $^{13}C$ spectra were obtained at $34^{\circ}C$ as a function of evolution time after applying various designed pulse sequences to this $AX_2$ spin system. It was found that nonlinear regression analysis of the relaxation data for these magnetization modes could provide the information about dipolar and spin-rotational auto-correlation and cross-correlation spectral densities for fluctuation of the $^{13}C-^1H$ internuclear vector in $CH_2Cl$ group. The results show that the effect of cross-correlation is comparable in magnitude to that of auto-correlation and the relaxation in this spin system is dominated by dipolar mechanism rather than spin-rotational one. From the resulting spectral density data we could calculate the bond angle ${\angle}HCH\;(105.1$^{\circ}$) and elements of the rotational diffusion tensor for $CH_2Cl$ group.

Efficient Energy Detection Method in Poor Radio Environment for Cognitive Radio System (Cognitive Radio 시스템을 위한 열악한 통신 환경에서 효과적인 에너지 검출방법)

  • Hyun, Young-Ju;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.7
    • /
    • pp.60-67
    • /
    • 2007
  • The spectrum sensing is important for decision of using frequency band. It checks the frequency band for cognitive radio system. In this paper, we apply autocorrelation function to the energy detection method. We use the autocorrelation function to improve the performance of spectrum sensing method based on the energy detection method. This method is different from cyclostationary process method where parameters such as the mean or the autocorrelation function are time-varying periodically. And we propose improved method that is robust in poor radio environment. If the proposed method applies for sensing in the cognitive radio system, it will have the structural simplicity and the fast computation of spectrum sensing.

Generation of Artificial Earthquake Ground Motions for the Area with Low Seismicity (국내 지진 기록을 이용한 약진 지역에서의 인공지진파 발생에 관한 연구)

  • 김승훈;이승창;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.497-504
    • /
    • 1998
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well own that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This model is based on the simulation for the strong-motion earthquakes with magnitude greater than approximately 5.0~6.0, because it will be not only expected to cause structural damage but also involved the characteristics of earthquake motions. Also, the recorded earthquake motion within this range are still very scarce in Korea. Thus, it is necessary to verify the model by the application of it to the mid-magnitude (approximately 4.0~6.0) earthquakes actually recorded in domestic or foreign area. The purpose of the paper is to generate an artificial earthquake using the model of Yeh and Wen in the area with low seismicity.

  • PDF

An accurate substructural synthesis approach to random responses

  • Ying, Z.G.;Zhu, W.Q.;Ye, S.Q.;Ni, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.47-75
    • /
    • 2011
  • An accurate substructural synthesis method including random responses synthesis, frequency-response functions synthesis and mid-order modes synthesis is developed based on rigorous substructure description, dynamic condensation and coupling. An entire structure can firstly be divided into several substructures according to different functions, geometric and dynamic characteristics. Substructural displacements are expressed exactly by retained mid-order fixed-interfacial normal modes and residual constraint modes. Substructural interfacial degree-of-freedoms are eliminated by interfacial displacements compatibility and forces equilibrium between adjacent substructures. Then substructural mode vibration equations are coupled to form an exact-condensed synthesized structure equation, from which structural mid-order modes are calculated accurately. Furthermore, substructural frequency-response function equations are coupled to yield an exact-condensed synthesized structure vibration equation in frequency domain, from which the generalized structural frequency-response functions are obtained. Substructural frequency-response functions are calculated separately by using the generalized frequency-response functions, which can be assembled into an entire-structural frequency-response function matrix. Substructural power spectral density functions are expressed by the exact-synthesized substructural frequency-response functions, and substructural random responses such as correlation functions and mean-square responses can be calculated separately. The accuracy and capacity of the proposed substructure synthesis method is verified by numerical examples.

Evaluation of the Performance Test Load through the Estimation of Vertical Loads on Vibration-Proof Fastening Systems (방진체결장치에 작용하는 수직하중 평가를 통한 성능시험하중 평가)

  • Yang, Sin Chu
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.777-784
    • /
    • 2016
  • In this study, regulation of the performance test load of a vibration-proof fastening system used in urban railways was established through evaluation of the loads that it bears in the field. In order to investigate the range of the dynamic stiffness of the vibration-proof fastening system, dynamic stiffness tests were carried out for three types of vibration-proof fastening system that can be domestically supplied. Train and track interaction analyses in the frequency domain were carried out to evaluate the dynamic wheel loads. The track irregularity, which is a very important input factor in train and track interaction analysis, was considered as a PSD (Power Spectral Density) function, which was derived based on the measured data. The loads on the vibration-proof rail fastening system were evaluated considering various operating conditions in the urban railway. Regulation of the performance test load of the vibration-proof rail fastening system was established based on the evaluated loads.