• Title/Summary/Keyword: Spectral

Search Result 8,284, Processing Time 0.031 seconds

A CLASSIFICATION METHOD BASED ON MIXED PIXEL ANALYSIS FOR CHANGE DETECTION

  • Jeong, Jong-Hyeok;Takeshi, Miyata;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.820-824
    • /
    • 2003
  • One of the most important research areas on remote sensing is spectral unmixing of hyper-spectral data. For spectral unmixing of hyper spectral data, accurate land cover information is necessary. But obtaining accurate land cover information is difficult process. Obtaining land cover information from high-resolution data may be a useful solution. In this study spectral signature of endmembers on ASTER acquired in October was calculated from land cover information on IKONOS acquired in September. Then the spectral signature of endmembers applied to ASTER images acquired on January and March. Then the result of spectral unmxing of them evauateted. The spectral signatures of endmembers could be applied to different seasonal images. When it applied to an ASTER image which have similar zenith angle to the image of the spectral signatures of endmembers, spectral unmixing result was reliable. Although test data has different zenith angle from the image of spectral signatures of endmembers, the spectral unmixing results of urban and vegetation were reliable.

  • PDF

Evaluating the Contribution of Spectral Features to Image Classification Using Class Separability

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • Image classification needs the spectral similarity comparison between spectral features of each pixel and the representative spectral features of each class. The spectral similarity is obtained by computing the spectral feature vector distance between the pixel and the class. Each spectral feature contributes differently in the image classification depending on the class separability of the spectral feature, which is computed using a suitable vector distance measure such as the Bhattacharyya distance. We propose a method to determine the weight value of each spectral feature in the computation of feature vector distance for the similarity measurement. The weight value is determined by the ratio between each feature separability value to the total separability values of all the spectral features. We created ten spectral features consisting of seven bands of Landsat-8 OLI image and three indices, NDVI, NDWI and NDBI. For three experimental test sites, we obtained the overall accuracies between 95.0% and 97.5% and the kappa coefficients between 90.43% and 94.47%.

Voice Activity Detection Based on Entropy in Noisy Car Environment (차량 잡음 환경에서 엔트로피 기반의 음성 구간 검출)

  • Roh, Yong-Wan;Lee, Kue-Bum;Lee, Woo-Seok;Hong, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Accurate voice activity detection have a great impact on performance of speech applications including speech recognition, speech coding, and speech communication. In this paper, we propose methods for voice activity detection that can adapt to various car noise situations during driving. Existing voice activity detection used various method such as time energy, frequency energy, zero crossing rate, and spectral entropy that have a weak point of rapid. decline performance in noisy environments. In this paper, the approach is based on existing spectral entropy for VAD that we propose voice activity detection method using MFB(Met-frequency filter banks) spectral entropy, gradient FFT(Fast Fourier Transform) spectral entropy. and gradient MFB spectral entropy. FFT multiplied by Mel-scale is MFB and Mel-scale is non linear scale when human sound perception reflects characteristic of speech. Proposed MFB spectral entropy method clearly improve the ability to discriminate between speech and non-speech for various in noisy car environments that achieves 93.21% accuracy as a result of experiments. Compared to the spectral entropy method, the proposed voice activity detection gives an average improvement in the correct detection rate of more than 3.2%.

  • PDF

Speech Emotion Recognition Based on GMM Using FFT and MFB Spectral Entropy (FFT와 MFB Spectral Entropy를 이용한 GMM 기반의 감정인식)

  • Lee, Woo-Seok;Roh, Yong-Wan;Hong, Hwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.99-100
    • /
    • 2008
  • This paper proposes a Gaussian Mixture Model (GMM) - based speech emotion recognition methods using four feature parameters; 1) Fast Fourier Transform(FFT) spectral entropy, 2) delta FFT spectral entropy, 3) Mel-frequency Filter Bank (MFB) spectral entropy, and 4) delta MFB spectral entropy. In addition, we use four emotions in a speech database including anger, sadness, happiness, and neutrality. We perform speech emotion recognition experiments using each pre-defined emotion and gender. The experimental results show that the proposed emotion recognition using FFT spectral-based entropy and MFB spectral-based entropy performs better than existing emotion recognition based on GMM using energy, Zero Crossing Rate (ZCR), Linear Prediction Coefficient (LPC), and pitch parameters. In experimental Results, we attained a maximum recognition rate of 75.1% when we used MFB spectral entropy and delta MFB spectral entropy.

  • PDF

Speech Estimators Based on Generalized Gamma Distribution and Spectral Gain Floor Applied to an Automatic Speech Recognition (잡음에 강인한 음성인식을 위한 Generalized Gamma 분포기반과 Spectral Gain Floor를 결합한 음성향상기법)

  • Kim, Hyoung-Gook;Shin, Dong;Lee, Jin-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.64-70
    • /
    • 2009
  • This paper presents a speech enhancement technique based on generalized Gamma distribution in order to obtain robust speech recognition performance. For robust speech enhancement, the noise estimation based on a spectral noise floor controled recursive averaging spectral values is applied to speech estimation under the generalized Gamma distribution and spectral gain floor. The proposed speech enhancement technique is based on spectral component, spectral amplitude, and log spectral amplitude. The performance of three different methods is measured by recognition accuracy of automatic speech recognition (ASR).

  • PDF

ALGEBRAIC SPECTRAL SUBSPACES OF OPERATORS WITH FINITE ASCENT

  • Han, Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.677-686
    • /
    • 2016
  • Algebraic spectral subspaces were introduced by Johnson and Sinclair via a transnite sequence of spaces. Laursen simplified the definition of algebraic spectral subspace. Algebraic spectral subspaces are useful in automatic continuity theory of intertwining linear operators on Banach spaces. In this paper, we characterize algebraic spectral subspaces of operators with finite ascent. From this characterization we show that if T is a generalized scalar operator, then T has finite ascent.

Optimization of color filters selection to estimate surface spectral reflectance of Munsell colors (물체의 분광반사율 추정을 위한 최적필터의 선정)

  • 이승희;이을환;유미옥;노상철;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.121-131
    • /
    • 1998
  • The object color does not look same under the different light source. It depends on the surface spectral reflectance and the spectral distribution of light source. Therefore we should find the surface spectral reflectance of object color and the spectral distribution of light source for color reproduction. Using Wiener estimation, we can estimate the spectral reflectance from low dimensional images obtained with multi-band image acquisition system. The kind and the number of imaging filters have the effect on the estimation of the spectral reflectance. Therefore it is important that optimal filters are selected to minimize the error of the result. In this paper, we describe methods to select optimal filters with minimum error between measured and estimated surface spectral reflectance and to estimate surface spectral reflectance of Munsell color chart from six multi-band images by using Wiener estimation.

  • PDF

Study on the dynamic behaviors of curved beam structure using spectral element (스펙트럴 요소를 이용한 곡선 보 구조물의 동적거동 해석)

  • 이준근;이우식;박철희
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.83-88
    • /
    • 1996
  • The significance of spectral element method is that it can treat the mass and stiffness distribution exactly in contrast to the conventional finite element method, and therefore the dynamic behaviors within each spectral element can be obtained exactly. The present study provides the derivation of the spectral element of a curved beam, while the previous ones presented that of a straight structure. Further, in order to verify the derived spectral element, the natural frequencies of a ring by the spectral element method are compared with those by the analytical method and those by the FEM. From the verification, derived spectral element is admissible. And the dynamic behaviors of curved beam are simulated by using the derived spectral element of a curved beam.

  • PDF

Optimization of color filters selection to estimate surface spectral reflectance of Munsell colors (물체의 분광반사 추정을 위한 최적필터의 선정)

  • 이승희;김종필;이을환;노상철;안석출
    • Proceedings of the Korean Printing Society Conference
    • /
    • 1998.10a
    • /
    • pp.1-6
    • /
    • 1998
  • The object color does not look same under the different light source. It depends on the surface spectral reflectance and the spectral distribution of light source. Therefore we should find the surface spectral reflectance of object color and the spectral distribution of light source for color reproduction. Using Winer estimation, we can reconstruct the spectral reflectance from low dimensional images obtained with a few filters. The kind and the number of filters have the effect on the estimation of the spectral reflectance. Therefore it is important that optimal filters are selected to minimize the error of the result. In this paper, we describe methods to select optimal filters with minimum error between measured and estimated surface spectral reflectance and to estimate surface spectral reflectance of Munsell color from six band images by using Wiener estimation.

  • PDF