• Title/Summary/Keyword: Specific standard of medical device

Search Result 12, Processing Time 0.02 seconds

Building a Rule-Based Goal-Model from the IEC 62304 Standard for Medical Device Software

  • Kim, DongYeop;Lee, Byungjeong;Lee, Jung-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4174-4190
    • /
    • 2019
  • IEC 62304 is a standard for the medical device software lifecycle. Developers must develop software that complies with all specifications in the standard for licensing. However, because the standard contains not only a large number of specifications, but also domain-specific information and association relationships between specifications, it requires considerable effort and time for developers to understand and interpret the standard. To support developers, this paper presents a method for extracting the contents of the IEC 62304 standard as a goal model, which is the core methodologies of requirements engineering. The proposed method analyzes the grammar of the standard to robustly extract complex structures and various information from standard specifications and define rules that extract goals and links from syntactic element units. We validated the actual extraction process for the standard document experimentally. Based on the extracted goal model, developers can intuitively and efficiently comply with the standard and track specific information within the medical software and standard domains.

Comparative Study of ISO Standards for an Effective Implementation of the Domestic Medical Device GMP System (ISO 국제표준의 비교 연구를 통한 국내 의료기기 GMP 제도의 효과적인 운영 방안)

  • Jung, Young A;Kim, Young Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.2
    • /
    • pp.211-224
    • /
    • 2018
  • Purpose: It can easily be understood that more rules and regulations need to be imposed on the medical device industry due to its impact on public health and hygiene. Domestic medical device manufacturers are thus required to comply with the requirements specified in the good manufacturing practice (GMP) system, and it is essential to abide by the international standards as well to sustain their global competitiveness. The main purpose of this study is to review the guidelines of the medical device GMP system in Korea and propose future directions for further enhancement of the GMP system. Methods: Specific requirements prescribed in international standards, such as ISO 9001:2015, ISO 13485:2016, ISO 14971:2012, and ISO 14155:2011, are analyzed and compared with the domestic GMP system. Results: It has been observed that the generic international standard related to quality management system, ISO 9001:2015, lays out the foundations for the development of quality management system relevant to medical device industry, ISO 13485:2003, with which the domestic GMP system is fully compatible. Further, several important aspects of risk management and clinical trials of medical devices are also recognized and included in the domestic medical device GMP system. Conclusion: Even though specific requirements of individual ISO standards are slightly different from each other, their overall structure and framework may contribute to the development and enhancement of globally competitive GMP system of the domestic medical device industry.

Reliability Management of Mechanical Ventilator in Intensive Care Unit Using FMEA Based on ISO14971 (ISO14971 기반 FMEA를 이용한 중환자실내 인공호흡기 신뢰성 관리)

  • Hyun Joon, Kim;Won Kyu, Kim;Tae Jong, Kim;Gee Young, Suh
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • Due to the spread of COVID-19, many patients with severe respiratory diseases have occurred worldwide, and accordingly, the use of mechanical ventilators has exploded. However, hospitals do not have systematic risk management, and the Medical Device Regulation also provides medical device risk management standards for manufacturers, but does not apply to devices in use. In this paper, we applied the Failure Mode Effects Analysis (FMEA) risk analysis technique based on the International Standard ISO 14971 (Medical Devices-Application of risk management to medical devices) for 85 mechanical ventilators of a specific model in use in hospitals. Failure modes and effects of each parts were investigated, and risk priority was derived through multiplication of each score by preparing criteria for severity, occurrence, and detection for each failure mode. As a result, it was confirmed that the microprocessor-based Patient Unit/Monitoring board in charge of monitoring scored the highest score with 36 points, and that reliability management is possible through systematic risk management according to priority.

A Study on the Analysis and Improvement of Medical Device Standards in Korea (국내 의료기기 표준 분석 및 개선에 관한 연구)

  • Yong Wan Kang;Kyung Ah Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.204-210
    • /
    • 2023
  • This study focuses on analyzing medical device standards and regulatory requirements in the medical device industry, based on the Medical Device Act in Korea. The objective of this analysis is to determine whether the domestic standards for medical devices in Korea align with international and regional standards. Furthermore, it aims to identify the current application of domestic standards in ensuring the safety and essential performance of medical devices. The analysis revealed that out of a total of 281 domestic standards, 127 standards reference international standards. In terms of the application of domestic standards to specific items, there were 473 types of instruments/machines, 30 types of medical supplies, and 45 types of dental materials. However, the level of compliance with international standards among the domestic medical device standards was only 21%. Upon detailed analysis, general and collateral standards accounted for 24%, while particular standards accounted for 19%. This indicates a significant deviation from the latest international standards. On the other hand, the level of compliance with international standards was analyzed to be 60% for particular standards and 72% for general and collateral standards in Korean industrial standards (KS). Considering these results, the disparities between domestic standards and international standards underscore the need for discussions on domestic medical device regulation and standardization. In conclusion, this study emphasizes the significance of maintaining up-to-date medical device standards and ensuring their alignment with international standards to ensure the safety and quality of medical devices. The findings highlight the necessity for further efforts to strengthen the domestic standardization system in order to promote the development of safe and high-quality medical devices.

3D Ultrasound Panoramic Image Reconstruction using Deep Learning (딥러닝을 활용한 3차원 초음파 파노라마 영상 복원)

  • SiYeoul Lee;Seonho Kim;Dongeon Lee;ChunSu Park;MinWoo Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.255-263
    • /
    • 2023
  • Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.

A Study on the Usefulness of Auto Dispenser and Optimized Dispensing Method (방사성 의약품 자동 분주장치의 유용성 및 최적화된 분주방법에 관한 고찰)

  • Lee, JeoungEun;Kim, Hosung;Ryu, Jaekwang;Jung, Wooyoung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.59-66
    • /
    • 2013
  • Purpose: Recently, there is an increase of the number of hospitals using auto dispenser to reduce occupational radiation exposure when drawing up of the $^{18}F-FDG$ dose (5.18 MBq/kg) in a syringe from the dramatic high activity of $^{18}F-FDG$ multidose vial. The aim of this study is to confirm that using auto dispenser actually reduces the radiation exposure for technologists. Also we analyzed the reproducibility of auto dispenser to find optimized dispensing method for the device. Materials and Methods: We conducted three experiments. Comparison of radiation exposure on chest and hands: The chest and hands exposure dose received by technologists during the injection were measured by electronic personal dosimeter (EPD) and ring TLD respectively. Reproducibility of dispensed volume: We draw up the normal saline into 5 and 2 mL syringe using auto dispenser by changing the volume from 1 to 15 mm for 5 times in the same setting of the volume. The weight of 5 normal saline dispensed from the device at same volume was measured using micro balance and calculated standard deviation and coefficient of variation. Reproducibility of dispensed radioactivity: We dispensed 362.6 $MBq{\pm}10%$ of $^{18}F-FDG$ in 5 and 2 mL syringes from the multidose vial of different specific activity. In the same setting of volume, we repeated dispensing for 4 times and compared standard deviation and coefficient of variation of radioactivity between 5 syringes. Results: There was significant difference in the average of chest exposure dose according to the dispensing methods (P<0.05). Also, when dispensing $^{18}F-FDG$ in manual method, exposure dose was 11.5 times higher in right hand and 4.8 times higher in left hand than in auto method. In the result of reproducibility of dispensed volume, standard deviation and coefficient of variation shows decline as the dispensing volume increases. As a result of reproducibility of dispensed radioactivity, standard deviation and coefficient of variation increases as the specific activity increases. Conclusion: We approved that the occupational radiation exposure dose of technologists were reduced when dispensing $^{18}F-FDG$ using auto dose dispenser. Secondly, using small syringes helps to increase reproducibility of auto dose dispense. And also, if you lower the specific activity of $^{18}F-FDG$ in multidose vial below 915-1,020 MBq/mL, you can use auto dispenser more effectively keeping the coefficient of variation lower than 10%.

  • PDF

A Study on Development of Guideline on Writing Technical Document for Electrical Medical Devices: Dental X-ray Equipment (치과용엑스선장치의 기술문서 작성을 위한 가이드라인 개발 연구)

  • Lee, Seung-Youl;Kim, Jae-Ryang;Lee, Jun-Ho;Park, Chang-Won
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.651-660
    • /
    • 2016
  • Due to recent population aging, the number of check-up for senior citizens has increased steadily. According to this trend, the market size of dental X-ray equipment and the number of approval and review for these devices have simultaneously increased. The technical document of medical device is required for approval and review for medical device, and medical device companies needs to have work comprehension and expertise, as the document needs to include the overall contents such as performances, test criteria, etc.. Yet, since most of domestic manufacturers or importers of medical devices are small businesses, it is difficult for them to recruit professional manpower for approval of medical devices, and submission of inaccurate technical documents has increased. These problems lead to delay of the approval process and to difficulties in quick entering into the market. Especially, the Ministry of Food and Drug safety (MFDS) standards of a dental extra-oral X-ray equipment, a dental intra-oral X-ray equipment, an arm-type computed tomography, and a portable X-ray system have been recently enacted or not. this guideline of dental X-ray equipment adjusting revised standards was developed to help relative companies and reviewers. For this study, first, the methods to write technical document have been reviewed with revised international and domestic regulations and system. Second, the domestic and foreign market status of each item has been surveyed and analyzed. Third, the contents of technical documents already approved by MFDS have been analyzed to select the correct example, test items, criteria, and methods. Finally, the guideline has been developed based on international and domestic regulation, through close review of a consultative body composed of academic, industrial, research institute and government experts.

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

Improvement of Endoscopic Image using De-Interlacing Technique (De-Interlace 기법을 이용한 내시경 영상의 화질 개선)

  • 신동익;조민수;허수진
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.469-476
    • /
    • 1998
  • In the case of acquisition and displaying medical Images such as ultrasonography and endoscopy on VGA monitor of PC system, image degradation of tear-drop appears through scan conversion. In this study, we compare several methods which can solve this degradation and implement the hardware system that resolves this problem in real-time with PC. It is possible to represent high quality image display and real-time processing and acquisition with specific de-interlacing device and PCI bridge on our hardware system. Image quality is improved remarkably on our hardware system. It is implemented as PC-based system, so acquiring, saving images and describing text comment on those images and PACS networking can be easily implemented.metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.

  • PDF

The Reliability and Validity of a Portable Hand-held Spirometer for the Measurement of Various Lung Functions in Healthy Adults

  • Merve Nur Uygun;Jun-Min Ann;Byeong-Hyeon Woo;Hyeon-Myeong Park;Ha-Im Kim;Dae-Sung Park;In-Beom Jeong
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.179-186
    • /
    • 2024
  • Objective: This study aims to assess the reliability and validity of the new hand-held spirometer as a potential substitute for traditional pulmonary function testing (PFT) devices. Design: Cross-sectional study. Methods: In this study, thirty healthy adults underwent spirometry using both the new hand-held spirometer and the MIR spirometer, which is a standard PFT device. Parameters including peak expiratory flow (PEF), forced expiratory volume in one second (FEV1), and forced vital capacity (FVC) were measured and analyzed for validity and reliability. Inter-rater reliability and validity were evaluated through 95% limits of agreement (LOA) and intraclass correlation coefficients (ICC). Statistical analyses, including the Bland-Altman plots and the ICC, were utilized to assess agreement between the two devices. Results: The new hand-held spirometer exhibited a good agreement with intra-class coefficient (ICC [2,1]) ranging 0.762 to 0.956 and 95% LOA of -1.94 to 1.80 when compared with MIR. The test-retest reliability of the hand-held spirometer analyzed using - ICC [2,1] demonstrated a good level of consistency (ICC [2,1] =0.849-0.934). Conclusions: In conclusion, the study aimed to assess the potential of the new hand-held spirometer as a viable alternative to traditional PFT devices, with a specific focus on its reliability and validity in spirometric measurements. The new hand-held spirometer exhibited good test-retest reliability across all measured variables, suggesting its potential as a valid and reliable tool for simultaneous PFT measurements.