• Title/Summary/Keyword: Specific primers

Search Result 1,057, Processing Time 0.027 seconds

Evaluation of Natural Attenuation by Addition of Fumarate as Carbon Source and Gene Analysis in Groundwater Sample (지하수 중 탄소원으로 fumarate 주입과 유전자분석을 통한 질산성질소 자연저감도 평가)

  • Park, Sunhwa;Kim, Hyun-Gu;Kim, Sohyun;Lee, Min-Kyeong;Lee, Gyeong-Mi;Kim, Young;Kim, Moon-Su;Kim, Taeseung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2014
  • In the results of monitoring nitrate concentration in more than 8,000 groundwater wells around agro-livestock, the average and maximum nitrate concentration was 9.4 mg/L and 101.2 mg/L, respectively. Since about 31% of the monitoring wells was exceed the quality standard for drinking water, nitrate control such as remediation or source regulation is required to conserve safe-groundwater in South Korea. Typical nitrate-treatment technologies include ion exchange, reverse osmosis, and biological denitrification. Among the treatment methods, biological denitrification by indigenous microorganism has environmental and economic advantages for the complete elimination of nitrate because of lower operating costs compared to other methods. Major mechanism of the process is microbial reduction of nitrate to nitrite and nitrogen gas. Three functional genes (nosZ, nirK, nirS) that encode for the enzyme involved in the pathway. In this work, we tried to develop simple process to determine possibility of natural denitrification reaction by monitoring the functional gene. For the work, the functional genes in nitrate-contaminated groundwater were monitored by using PCR with specific target primers. In the result, functional genes (nosZ and nirK) encoding denitrification enzymes were detected in the groundwater samples. This method can help to determine the possibility of natural-nitrate degradation in target groundwater wells without multiplex experimental process. In addition, for field-remediation application we selected nitrate-contaminated site where 200~600 mg/L of nitrate is continuously detected. To determine the possibility of nitrate-degradation by stimulated-natural attenuation, groundwater was sampled in two different wells of the site and nitrate concentration of the samples was 300 mg/L and 616 mg/L, respectively. Fumarate for different C/N ratio was added into microcosm bottles containing the groundwater to examine denitrification rate depending on carbon concentration. In the result, once 1.5 times more than amount of fumarate stoichiometry required was added, the 616 mg/L of nitrate and 300 mg/L of nitrate were completely degraded in 8 days and 30 days. The nitrite, byproduct of denitrification process, was also completely degraded during the experimental period.

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model

  • Shin, Phil-Kyung;Zoh, Yoonchae;Choi, Jina;Kim, Myung-Sunny;Kim, Yuri;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS AND METHODS: $CD133^+CD44^+$ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and $40{\mu}g/mL$ for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA ($ddC_t$). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA ($dC_t$). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner ($5.16{\pm}0.13$ at $0{\mu}g/mL$, $4.79{\pm}0.12$ at $10{\mu}g/mL$, $3.24{\pm}0.08$ at $20{\mu}g/mL$ and $3.99{\pm}0.09$ at $40{\mu}g/mL$; P = 0.0276). Telomerase activities concurrently decreased with telomere length ($1.47{\pm}0.04$, $1.09{\pm}0.01$, $0.76{\pm}0.08$, and $0.88{\pm}0.06$; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.

Difference of Gray Mold Severity at Roses Caused by Botrytis cinerea Strains (잿빛곰팡이병원균 Botrytis cinerea 균주 종류별 장미 발병 정도의 차이)

  • Hwang, Kyu-Hyon;Hong, Seung-Min;Lee, Young-Soon;Lee, Hyun-Ju;Seo, Myeong-Whoon
    • Research in Plant Disease
    • /
    • v.25 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • Botrytis cinerea is the pathogen for a gray mold generating problems during the cultivation and transportation of roses. But there is little information about the difference of the symptom severity caused by gray mold on rose varieties and pathogen strains. 16 strains were collected from the rose cultivation area to confirm the degree of disease occurrence against strains and each variety. Collected 16 strains were identified based on the sequences analysis of ITS region of ribosomal DNA by using specific primers. The sequence analysis was performed by comparing the sequences to find a difference. To confirm the difference in disease occurrence for each strains, the difference was classified from 0 to 5 stages using charmant variety as a control. The data was confirmed through Kruskal-Wallis ANOVA. The result showed the significant difference in the pathogenicity caused by strains. WNG6_5 showed the lowest pathogenicity with 0.24 and WNG6_3 showed the highest with 3.20. The difference between two strains were almost 3.0. In addition, nine varieties of roses were more investigated with three strains such as the strains of WNG6_5, Hwa_1, and WNG6_3. The result showed that the Love Letter variety showed resistance and the Ice Bear variety was sensitive to three strains. Taken together, this study showed the significant difference by the interactions of rose varieties and gray mold strains.

A Survey on the Actual Condition of Products not Labeled with Allergens (알레르기 유발물질 미표시 제품 실태 조사)

  • Kim, Kyung-Seon;Song, Sung-Min;Kwon, Sung-Hee;Jang, Seung-Eun;Lee, Bo-Min;Kim, Meyong-Hee;Han, Young-Sun;Hur, Myung-Je;Kwon, Mun-Ju
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.257-263
    • /
    • 2021
  • For this survey, PCR (polymerase chain reaction) testing was conducted using 14 species-specific primers to monitor the labeling of allergy-causing substances in various foods. Sixty samples from stationary stores near elementary schools and imported confectionery shops were tested, including snacks, candies, and chocolate. Allergens of milk, wheat, eggs, tomatoes, almonds and peanuts were detected in 30 cases (50.0%). In addition, many products were detected as either containing unlabeled substances or not showing allergen-related information and labeling in Korean. In order to ensure that consumers are able to purchase products safely and securely, a system for thorough guidance and monitoring of allergen-related labeling by domestic manufacturing and processing companies and import-related companies is required.

First Report of Tomato Spotted Wilt Virus in Angelica acutiloba (당귀에서 발생한 토마토반점위조바이러스의 감염 첫 보고)

  • Kwak, Hae-Ryun;Hong, Su-Bin;Choi, Hyeon-Yong;Park, Gosoo;Hur, On-Sook;Byun, Hee-Seong;Choi, Hong-Soo;Kim, Mikyeong
    • Research in Plant Disease
    • /
    • v.27 no.2
    • /
    • pp.84-90
    • /
    • 2021
  • In June 2019, Angelica acutiloba plants showing virus-like symptoms such as chlorotic local lesion and mosaic on the leaves were found in a greenhouse in Nonsan, South Korea. To identify the causal virus, we collected 6 symptomatic A. acutiloba leaf samples and performed reverse transcription polymerase chain reaction (RT-PCR) analysis using specific detection primers for three reported viruses including tomato spotted wilt virus (TSWV). RT-PCR results showed that five symptomatic samples were positive for TSWV. Mechanical sap inoculation of one of the collected TSWV isolate (TSWV-NS-AG28) induced yellowing, chlorosis and mosaic symptoms in A. acutiloba and necrotic local lesions and mosaic in Solanaceae species. Phylogenetic analysis based on the complete genome sequences showed that TSWV-NS-AG28 had a maximum nucleotide identity with TSWVNS-BB20 isolated from butterbur in Nonsan, South Korea. To our knowledge, this is the first report of TSWV infection in A. acutiloba.

Partial Sequencing and Characterization of Porcine DNA Methyltransferase I cDNA

  • Lee, Y.Y.;Kim, M.S.;Park, J.J.;H.Y. Kang;Y.M. Chang;Yoon, J.T.;K.S. Min
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.84-84
    • /
    • 2003
  • DNA methylation is involved in epigenetic processes such as X-chromosome inactivation, imprinting and silencing of transposons. DNA methylation is a highly plastic and critical component of mammalian development The DNA methyltransferases (Dnmts) are responsible for the generation of genomic methylation patterns, which lead to transcriptional silencing. The maintenance DNA methyltransferase enzyme, Dnmt 1, and the de novo methyltransferase, Dnmt3a and Dnmt3b, are indispensable for development because mice homozygous for the targeted disruption of any of these genes are not viable. The occurrence of DNA methylation is not random, and it can result in gene silencing The mechanisms underlying these processes are poorly understood. It is well established that DNA methylation and histone deacetylation operate along a common mechanistic pathway to repress transcription through the action of methyl-binding domain proteins (MBDs), which are components of, or recruit, histone deacetylase (HDAC) complexes to methylated DNA. As a basis for future studies on the role of the DNA-methyl-transferase in porcine development, we have isolated and characterized a partial cDNA coding for the porcine Dnmt1. Total RNA of testis, lung and ovary was isolated with TRlzol according to the manufacture's specifications. 5 ug of total RNA was reverse transcribed with Super Script II in the presence of porcine Dnmt 1 specific primers. Standard PCRs were performed in a total volume of 50 ul with cDNA as template. Two DNA fragmenets in different position were produced about 700bp, 1500bp and were cloned into pCR II-TOPO according to the manufacture's specification. Assembly of all sequences resulted in a cDNA from 158bp of 5'to 4861bp of 3'compare with the known human maintenance methyltransferase. Now, we are cloning the unknown Dnmt 1 region by 5'-RACE method and expression of Dnmt 1 in tissues from adult porcine animals.

  • PDF

Characterization of broad bean wilt virus 2 isolated from Perilla frutescens in Korea (국내 잎들깨에서 발생한 잠두위조바이러스2의 특성 구명)

  • Hyun-Sun Kim;Hee-Seong Byun;You-Ji Choi;Hyun-Yong Choi;Jang-Kyun Seo;Hong-Soo Choi;Bong-Choon Lee;Mikyeong Kim;Hae-Ryun Kwak
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Broad bean wilt virus 2 (BBWV2) is a species in the genus Fabavirus and family Secoviridae, which is transmitted by aphids and has a wide host range. The BBWV2 genome is composed of two single-stranded, positive-sense RNAs, RNA-1 and RNA-2. The representative symptoms of BBWV2 are mosaic, mottle, vein clearing, wilt, and stunting on leaves, and these symptoms cause economic damage to various crops. In 2019, Perilla fructescens leaves with mosaic and yellowing symptoms were found in Geumsan, South Korea. Reverse-transcription polymerase chain reaction (RT-PCR) was performed with specific primers for 10 reported viruses, including BBWV2, to identify the causal virus, and the results were positive for BBWV2. To characterize a BBWV2 isolate (BBWV2-GS-PF) from symptomatic P. fructescens, genetic analysis and pathogenicity tests were performed. The complete genomic sequences of RNA-1 and RNA-2 of BBWV2-GS-PF were phylogenetically distant to the previously reported BBWV2 isolates, with relatively low nucleotide sequence similarities of 76-80%. In the pathogenicity test, unlike most BBWV2 isolates with mild mosaic or mosaic symptoms in peppers, the BBWV2-GS-PF isolate showed typical ring spot symptoms. Considering these results, the BBWV2-GS-PF isolate from P. fructescens could be classified as a new strain of BBWV2.

Effects of the Proliferation of Beneficial and Harmful Enteric Bacteria after Intake of Soybean Fermentation (Zen) Produced by a Mixture of Lactobacilli and Saccharomyces (Lactobacilli와 Saccharomyces 혼합균주의 대두발효액(Zen) 섭취 후 장내 유익세균과 유해세균의 증식에 미친 영향)

  • Won, Ryu Seo;Lee, Hyung H.
    • Journal of Naturopathy
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the increase or decrease of important intestinal beneficial bacteria and inhibitory bacteria in 30 stools of clinical subjects after ingesting Zen fermentation broth as a mixed microbial fermentation solution for eight weeks. Methods: Intestinal bacteria were identified by PCR amplification using specific primers. Results: Bifidobacterium genus gi% of test group ingested Zen-fermented broth was 55.15% before and 70.1% after ingestion, so it was a significant difference (p<.009). Lactobacillus genus of the test group was 46.87% before and 60.91% after ingestion, it was a significant difference (p<.01). Clostridium genus of the test group was 85.64% before and 65.99% after ingestion. There was a significant difference (p<.017) as the pre-post-difference decreased to -19.65%. Bacteroides genus of the test group was 17.11% before and 20.22% after ingestion. There was a significant difference (p<.048) as the pre-post-difference increased to 3.11%. Prevotella genus of the test group was 14.01% before and 16.79% after ingestion, so it was not a significant difference. Conclusions: Intestinal bacteria increased the proliferation of beneficial bacteria and suppressed harmful bacteria in the intestines after ingesting the Zen-fermented broth of the mixed microorganism. The Zen fermentation broth evaluated as a beneficial drink for intestinal health.

Distribution of Beneficial Bacteria in the Intestines after Enzamin Ingestion of Bacillus subtilis AK Strain Fermentation (Bacillus subtilis AK균 발효액(Enzamin)의 섭취 후 장내 유익세균의 분포조사)

  • Ryu, Seo Won;Lee, Hyung H.
    • Journal of Naturopathy
    • /
    • v.7 no.2
    • /
    • pp.27-38
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate whether intestinal proliferation is promoted in beneficial intestinal bacteria or decreased in harmful bacteria before and after ingesting Bacillus fermentation broth (ENM) for 8 weeks in the 16 subjects. Method: Intestinal bacteria were identified by PCR amplification using specific 16S rRNA primers. Results: The Bifidobacterium gene index(%)(gi%) increased to 58.92% in the control group and 69.53% in the test group after the ingestion of ENM, but there was no significant difference. Lactobacillus gi% increased significantly (49.37% in the control and 66.43% in the test) (p<.029). Clostridium gi% was significantly decreased after treatment (83.16% in the control and 67.76% in the test) (p<.077). Bacteroides gi% increased significantly (12.58% in the control and 20.87% in the test) after ingesting (p<.095). Prevotella gi% increased significantly (7.55% in the control and 17.28% in the test) after ingesting (p<.005). After ingesting, the median bacteria increased significantly in the control (20.06%) and the test (35.88%) (p<.001). Conclusions: After ingestion of the ENM, the number of beneficial bacteria increased and the number of harmful bacteria Clostridium tended to decrease. This suggests that ingestion of the Bacillus fermented beverage ENM has an effect on the proliferation of intestinal bacteria.

  • PDF

Characterization of the DGAT1 Gene in the Korean Holstein Dairy Cattle Population (한국 Holstein종 유우집단의 DGAT1 유전자의 특성분석)

  • Son, Ji-Young;Jeong, Hang-Jin;Yu, Seong-Lan;Lee, Jun-Heon;Do, Chang-Hee;Ryoo, Seung-Heui;Sang, Byung-Chan
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.167-177
    • /
    • 2009
  • This study was conducted to characterize the DGAT1 gene in Korean Holstein dairy cattle population and examine the relationship of DGAT1 polymorphisms with milk yield and milk fat yield for the genetic improvement of Korean Holstein dairy cattle. Results indicated that the 411 bp PCR products were successfully amplified by DGAT1 specific primers. Sequence analysis indicated that the DGTA1 Q allele had AUG (Lysine, K) nucleotide sequences in 216-218 bp and q allele had GCG (Alanine, A) sequences in the same position. Nucleotide sequence homology between the DGAT1 sequences generated in this study showed 100% homology with bovine DGAT1 sequences in the NCBI database. The genotype frequencies of DGAT1 QQ, Qq, and qq were 16.43, 36.43, and 47.14%, respectively, in Korean Holstein dairy cattle population. The observed Q and q allele frequencies were 0.35 and 0.65, respectively. Statistically significant (P<0.05) results were identified for milk yield and milk fat yield for the DGAT1 genotypes. The Qq genotype Holsteins have significantly higher milk yield and milk fat yield than those of the QQ and qq genotype Holsteins(P<0.05).

  • PDF