• 제목/요약/키워드: Specific mRNA

검색결과 852건 처리시간 0.025초

역전사 연쇄중합반응에 의한 착상전 생쥐난자에서의 상이한 mRNA의 발현조사에 의한 새로운 유전자의 크로닝법 (Differential Display of mRNA in the Preimplantation Mouse Embryos by Reverse Transcriptase Polymerase Chain Reaction)

  • 김진회;박흠대;이훈택;정길생
    • 한국가축번식학회지
    • /
    • 제18권3호
    • /
    • pp.199-206
    • /
    • 1994
  • 본 연구는 생쥐 배 발생과정의 상이한 발현을 RT-PCR법에 의해 무작위 증폭함으로서 새로운 유전자를 손쉽게 크로닝하기 위해 수행되었다. mRNA의 상이한 display법은 Ling 과 Pardee (Science 257, 1992)에 의해 개발되었으며, 최근 Zimermann과 Schultz (PNAS USA 91, 1994)에 의해 재증명되었다. 이 방법은 특정 유전자의 일시적 발현의 변화가 maternal 제어로부터 접합체 제어로의 이행에 따른 발현전이, 다정자 침입과 단일 정자 침입에 의한 배발생의 기능적 차이, 성공적으로 부화한 배반포기 배와 부화에 실패한 배반포기 배에서의 발현의 차이는 물론 세포주기에 따른 유전자 발현 양식의 변화에 따른 새로운 유전자의 크로닝을 가능케 한다. 이 방법에 의해, 2세포기 특이 발현 유전자를 크로닝 하였으며, 이 유전자는 EcoRI제한 효소 처리후 Southern blot을 행한 결과 약 15kb genomic size를 가진 것으로 나타났다. 이 새로운 유전자는 간장 특이적 발현을 나타내었다. 또한, 적어도 2개의 mRNA가 존재하였으며, 이는 RNA splicing에 의한 것으로 추정되었다. (PCR, RT-PCR, cloning, preimplantation, mouse)

  • PDF

Artificial antisense RNAs silence lacZ in E. coli by decreasing target mRNA concentration

  • Alessandra, Stefan;Alessandro, Tonelli;Flavio, Schwarz;Alejandro, Hochkoeppler
    • BMB Reports
    • /
    • 제41권8호
    • /
    • pp.568-574
    • /
    • 2008
  • Antisense RNA molecules are powerful tools for controlling the expression of specific genes but their use in prokaryotes has been limited by their unpredictable antisense effectiveness. Moreover, appreciation of the molecular mechanisms associated with silencing in bacteria is still restricted. Here we report our attempts to define an effective antisense strategy in E. coli, and to dissect the observed silencing process. Antisense constructs complementary to different regions of lacZ were investigated, and silencing was observed exclusively upon expression of antisense RNA hybridising the 5'UTR of lac messenger. The level of lacZ mRNA was reduced upon expression of this antisense construct, and the silencing competence was found to be closely associated with its stability. These observations may help in the design of antisense molecules directed against prokaryotic genes.

Regulation of chicken vanin1 gene expression by peroxisome proliferators activated receptor α and miRNA-181a-5p

  • Wang, Zhongliang;Yu, Jianfeng;Hua, Nan;Li, Jie;Xu, Lu;Yao, Wen;Gu, Zhiliang
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.172-184
    • /
    • 2021
  • Objective: Vanin1 (VNN1) is a pantetheinase that can catalyze the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies showed that VNN1 is specifically expressed in chicken liver. In this study, we aimed to investigate the roles of peroxisome proliferators activated receptor α (PPARα) and miRNA-181a-5p in regulating VNN1 gene expression in chicken liver. Methods: 5'-RACE was performed to identify the transcription start site of chicken VNN1. JASPAR and TFSEARCH were used to analyze the potential transcription factor binding sites in the promoter region of chicken VNN1 and miRanda was used to search miRNA binding sites in 3' untranslated region (3'UTR) of chicken VNN1. We used a knock-down strategy to manipulate PPARα (or miRNA-181a-5p) expression levels in vitro to further investigate its effect on VNN1 gene transcription. Luciferase reporter assays were used to explore the specific regions of VNN1 targeted by PPARα and miRNA-181a-5p. Results: Sequence analysis of the VNN1 promoter region revealed several transcription factor-binding sites, including hepatocyte nuclear factor 1α (HNF1α), PPARα, and CCAAT/enhancer binding protein α. GW7647 (a specific agonist of PPARα) increased the expression level of VNN1 mRNA in chicken primary hepatocytes, whereas knockdown of PPARα with siRNA increased VNN1 mRNA expression. Moreover, the predicted PPARα-binding site was confirmed to be necessary for PPARα regulation of VNN1 gene expression. In addition, the VNN1 3'UTR contains a sequence that is completely complementary to nucleotides 1 to 7 of miRNA-181a-5p. Overexpression of miR-181a-5p significantly decreased the expression level of VNN1 mRNA. Conclusion: This study demonstrates that PPARα is an important transcriptional activator of VNN1 gene expression and that miRNA-181a-5p acts as a negative regulator of VNN1 expression in chicken hepatocytes.

SR proteins regulate V6 exon splicing of CD44 pre-mRNA

  • Loh, Tiing Jen;Moon, Heegyum;Jang, Ha Na;Liu, Yongchao;Choi, Namjeong;Shen, Shengfu;Williams, Darren Reece;Jung, Da-Woon;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.612-616
    • /
    • 2016
  • CD44 pre-mRNA includes 20 exons, of which exons 1-5 ($C_1-C_5$) and exons 16-20 ($C_6-C_{10}$) are constant exons, whereas exons 6-15 ($V_1-V_{10}$) are variant exons. $V_6$-exon-containing isoforms have been known to be implicated in tumor cell invasion and metastasis. In the present study, we performed a SR protein screen for CD44 $V_6$ splicing using overexpression and lentivirus-mediated shRNA treatment. Using a CD44 $V_6$ minigene, we demonstrate that increased SRSF3 and SRSF4 expression do not affect $V_6$ splicing, but increased expression of SRSF1, SRSF6 and SRSF9 significantly inhibit $V_6$ splicing. In addition, using a constitutive exon-specific primer set, we could not detect alterations of CD44 splicing after SR protein-targeting shRNA treatment. However, using a $V_6$ specific primer, we identified that reduced SRSF2 expression significantly reduced the $V_6$ isoform, but increased $V_{6-10}$ and $V_{6,8-10}$ isoforms. Our results indicate that SR proteins are important regulatory proteins for CD44 $V_6$ splicing.

맥주오염미생물의 동정과 specific PCR primer의한 신속한 검출 방법 (Characterization of beer-spoilage microorganism and its rapid detection by specific PCR primer)

  • 이택인;최신건
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.141-147
    • /
    • 2008
  • Several contaminated bacteria such as Lactobacillus brevis and Pediococcus damnosus in beer production cause beer spoilage by producing off flavours and turbidity. Detection of these organisms is complicated by the strict anaerobic conditions and lengthy incubation times required for their cultivation, consequently there is a need for more rapid detection methods. Recently, two contaminated strains were isolated from vessel of beer production and identified as Lactobacillus species by API kit identificaton as well as 16S-23S ITS sequencing analyses. Two isolated strains were named as Lactobacillus sp. HLA1 and Lactobacillus HLB2, respectively. A polymerase chain reaction (PCR) method was developed for the rapid and specific detection of Lactobacillus sp.. Two sets of primer pairs (HLA1-F/HLA1-R and HLB2-F/HLB2-R) were designed for the amplification of a 1576 base pair (bp) fragment of the HLA1 16S-23S rRNA gene and 1888 bp fragement of the HLB2 16S-23S rRNA. Amplified PCR products were highly specific to detect corresponding bacteria when other contaminated strains were used as PCR templates. However, detection of both strains were limited when $100{\mu}{\ell}$ of cultured samples were mixed with $100m{\ell}$ of beer sample in arbitrary manner. The sensitivity of the assay still needs to be improved for direct detection of the small amounts of bacteria present in beer.

  • PDF

The translational landscape as regulated by the RNA helicase DDX3

  • Park, Joon Tae;Oh, Sekyung
    • BMB Reports
    • /
    • 제55권3호
    • /
    • pp.125-135
    • /
    • 2022
  • Continuously renewing the proteome, translation is exquisitely controlled by a number of dedicated factors that interact with the ribosome. The RNA helicase DDX3 belonging to the DEAD box family has emerged as one of the critical regulators of translation, the failure of which is frequently observed in a wide range of proliferative, degenerative, and infectious diseases in humans. DDX3 unwinds double-stranded RNA molecules with coupled ATP hydrolysis and thereby remodels complex RNA structures present in various protein-coding and noncoding RNAs. By interacting with specific features on messenger RNAs (mRNAs) and 18S ribosomal RNA (rRNA), DDX3 facilitates translation, while repressing it under certain conditions. We review recent findings underlying these properties of DDX3 in diverse modes of translation, such as cap-dependent and cap-independent translation initiation, usage of upstream open reading frames, and stress-induced ribonucleoprotein granule formation. We further discuss how disease-associated DDX3 variants alter the translation landscape in the cell.

Validation of Gene Silencing Using RNA Interference in Buffalo Granulosa Cells

  • Monga, Rachna;Datta, Tirtha Kumar;Singh, Dheer
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권11호
    • /
    • pp.1529-1540
    • /
    • 2011
  • Silencing of a specific gene using RNAi (RNA interference) is a valuable tool for functional analysis of a target gene. However, information on RNAi for analysis of gene function in farm animals is relatively nil. In the present study, we have validated the interfering effects of siRNA (small interfering RNA) using both quantitative and qualitative gene silencing in buffalo granulosa cells. Qualitative gene knockdown was validated using a fluorescent vector, enhanced green fluorescence protein (EGFP) and fluorescently labeled siRNA (Cy3) duplex. While quantitatively, siRNA targeted against the luciferase and CYP19 mRNA was used to validate the technique. CYP19 gene, a candidate fertility gene, was selected as a model to demonstrate the technique optimization. However, to sustain the expression of CYP19 gene in culture conditions using serum is difficult because granulosa cells have the tendency to luteinize in presence of serum. Therefore, serum free culture conditions were optimized for transfection and were found to be more suitable for the maintenance of CYP19 gene transcripts in comparison to culture conditions with serum. Decline in fluorescence intensity of green fluorescent protein (EGFP) was observed following co-transfection with plasmid generating siRNA targeted against EGFP gene. Quantitative decrease in luminescence was seen when co-transfected with siRNA against the luciferase gene. A significant suppressive effect on the mRNA levels of CYP19 gene at 100 nM siRNA concentration was observed. Also, measurement of estradiol levels using ELISA (enzyme-linked immunosorbent assay) showed a significant decline in comparison to control. In conclusion, the present study validated gene silencing using RNAi in cultured buffalo granulosa cells which can be used as an effective tool for functional analysis of target genes.

MiRNA Molecular Profiles in Human Medical Conditions: Connecting Lung Cancer and Lung Development Phenomena

  • Aghanoori, Mohamad-Reza;Mirzaei, Behnaz;Tavallaei, Mahmood
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9557-9565
    • /
    • 2014
  • MiRNAs are endogenous, single stranded ~22-nucleotide non-coding RNAs (ncRNAs) which are transcribed by RNA polymerase II and mediate negative post-transcriptional gene regulation through binding to 3'untranslated regions (UTR), possibly open reading frames (ORFs) or 5'UTRs of target mRNAs. MiRNAs are involved in the normal physiology of eukaryotic cells, so dysregulation may be associated with diseases like cancer, and neurodegenerative, heart and other disorders. Among all cancers, lung cancer, with high incidence and mortality worldwide, is classified into two main groups: non-small cell lung cancer and small cell lung cancer. Recent promising studies suggest that gene expression profiles and miRNA signatures could be a useful step in a noninvasive, low-cost and repeatable screening process of lung cancer. Similarly, every stage of lung development during fetal life is associated with specific miRNAs. Since lung development and lung cancer phenomena share the same physiological, biological and molecular processes like cell proliferation, development and shared mRNA or expression regulation pathways, and according to data adopted from various studies, they may have partially shared miRNA signature. Thus, focusing on lung cancer in relation to lung development in miRNA studies might provide clues for lung cancer diagnosis and prognosis.

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells

  • Kim, Na-Young;Baek, Jin-Young;Choi, Hong-Seok;Chung, In-Sik;Shin, Sung-Ho;Lee, Jung-Ihn;Choi, Jung-Yun;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.190-198
    • /
    • 2012
  • RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.

독성물질 대사효소 조절기전에 관한 연구

  • 윤여표;홍연탁;김부영
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1992년도 제1회 신약개발 연구발표회 초록집
    • /
    • pp.54-54
    • /
    • 1992
  • 약물, hormone, 독성물질등의 대사능과 발암 가능성등이 간장 장해시 및 ketosis시에 달라지는 원인과 기전, 독성물질 대사효소의 변동과 그 작용기전을 규명하고자, 대표적인 간장장해 물질인 carbon tetrachloride를 rat에 투여하여 간장 장해를 일으키고, 당뇨병, starvation, high-fat diet처리하여 ketosls상태를 만든 후에, specific cytochrome P45O polyclonal antibodies와 cDNA probes를 사용하여, enzyme activitieg, Western immunoblot analysis와 mRNA Northern blot analysis 등을 실험하여, 간장 장해와 ketosis시 cytochrome P45O의 변동과 그 작용기전, regulation을 규명하고자 하였다. 실험 결과, $CCl_4$투여후 P450IIE enzyme (aniline hydroxylase) 활성이 시간 의존적으로 급격히 떨어졌고, P450IIE protein양이 똑같은 방식으로 감소되었으나 mRNA level은 변화가 없었다. $CCl_4$에 의해서 P450IIE는 protein의 특이적인 파괴에 의한 post-translational reduction됨을 알 수 있었다. 반면에 당뇨병, starvation, high-fat diet등 ketosis시에는 P450IIE 효소활성이 2-3배 증가되었고, P450IIE protein양도 같은 수준으로 증가되었으며, mRNA도 증가 되었다. Ketosis시에는 P450IIE가 pretranslational activation됨을 알 수 있었다.

  • PDF