References
- Dupre S, Graziani MT, Rosei MA, Fabi A, Del Grosso E. The enzymatic breakdown of pantethine to pantothenic acid and cystamine. Eur J Biochem 1970;16:571-8. https://doi.org/10.1111/j.1432-1033.1970.tb01119.x
- Sendo F, Araki Y. Regulation of leukocyte adherence and migration by glycosylphosphatidyl-inositol-anchored proteins. J Leukoc Biol 1999;66:369-74. https://doi.org/10.1002/jlb.66.3.369
- Berruyer C, Pouyet L, Millet V, et al. Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor γ activity. J Exp Med 2006;203:2817-27. https://doi.org/10.1084/jem.20061640
- Jansen PAM, Kamsteeg M, Rodijk-Olthuis D, et al. Expression of the vanin gene family in normal and inflamed human skin: induction by proinflammatory cytokines. J Investig Dermatol 2009;129:2167-74. https://doi.org/10.1038/jid.2009.67
- van Diepen JA, Jansen PA, Ballak DB, et al. PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism. J Hepatol 2014;61:366-72. https://doi.org/10.1016/j.jhep.2014.04.013
- Li Y, Wang X, Yu J, et al. MiR-122 targets the vanin 1 gene to regulate its expression in chickens. Poult Sci 2016;95:1145-50. https://doi.org/10.3382/ps/pew039
- Chen S, Zhang W, Tang C, Tang X, Liu L, Liu C. Vanin-1 is a key activator for hepatic gluconeogenesis. Diabetes 2014;63:2073-85. https://doi.org/10.2337/db13-0788
- Berruyer C, Martin FM, Castellano R, et al. Vanin-1-/- mice exhibit a glutathione-mediated tissue resistance to oxidative stress. Mol Cell Biol 2004;24:7214-24. https://doi.org/10.1128/MCB.24.16.7214-7224.2004
- Wang X, Shao F, Yu J, Jiang H, Gong D, Gu Z. MicroRNA-122 targets genes related to liver metabolism in chickens. Comp Biochem Physiol B Biochem Mol Biol 2015;184:29-35. https://doi.org/10.1016/j.cbpb.2015.02.002
- Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPARα in energy metabolism and vascular homeostasis. J Clin Invest 2006;116:571-80. https://doi.org/10.1172/JCI27989
- Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS. Defect in peroxisome proliferator-activated receptor α-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 2000;275:28918-28. https://doi.org/10.1074/jbc.M910350199
- Rommelaere S, Millet V, Gensollen T, et al. PPARalpha regulates the production of serum Vanin-1 by liver. FEBS Lett 2013;587:3742-8. https://doi.org/10.1016/j.febslet.2013.09.046
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
- Kaucsar T, Racz Z, Hamar P. Post-transcriptional gene-expression regulation by micro RNA (miRNA) network in renal disease. Adv Drug Deliv Rev 2010;62:1390-401. https://doi.org/10.1016/j.addr.2010.10.003
- Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003;115: 787-98. https://doi.org/10.1016/S0092-8674(03)01018-3
- Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105. https://doi.org/10.1101/gr.082701.108
- Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008;9:219-30. https://doi.org/10.1038/nrm2347
- Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes 2008;57:2728-36. https://doi.org/10.2337/db07-1252
- Ramirez CM, Goedeke L, Rotllan N, et al. MicroRNA 33 regulates glucose metabolism. Mol Cell Biol 2013;33:2891-902. https://doi.org/10.1128/MCB.00016-13
- Fu X, Dong B, Tian Y, et al. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest 2015;125:2497-509. https://doi.org/10.1172/JCI75438
- Deeb N, Lamont SJ. Genetic architecture of growth and body composition in unique chicken populations. J Hered 2002;93:107-18. https://doi.org/10.1093/jhered/93.2.107
- Jennen DGJ, Vereijken ALJ, Bovenhuis H, et al. Detection and localization of quantitative trait loci affecting fatness in broilers. Poult Sci 2004;83:295-301. https://doi.org/10.1093/ps/83.3.295
- Park TS, Park J, Lee JH, Park JW, Park BC. Disruption of G0/G1 switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken. FASEB J 2019; 33:1188-98. https://doi.org/10.1096/fj.201800784R
- Martin F, Penet MF, Malergue F, et al. Vanin-1-/- mice show decreased NSAID- and Schistosoma-induced intestinal inflammation associated with higher glutathione stores. J Clin Invest 2004;113:591-7. https://doi.org/10.1172/JCI19557
- Frith MC, Valen E, Krogh A, Hayashizaki Y, Carninci P, Sandelin A. A code for transcription initiation in mammalian genomes. Genome Res 2008;18:1-12. https://doi.org/10.1101/gr.6831208
- Gensollen T, Bourges C, Rihet P, et al. Functional polymorphisms in the regulatory regions of the VNN1 gene are associated with susceptibility to inflammatory bowel diseases. Inflamm Bowel Dis 2013;19:2315-25. https://doi.org/10.1097/MIB.0b013e3182a32b03
- Wilson MJ, Jeyasuria P, Parker KL, Koopman P. The transcription factors steroidogenic factor-1 and SOX9 regulate expression of Vanin-1 during mouse testis development. J Biol Chem 2005;280:5917-23. https://doi.org/10.1074/jbc.M412806200
- Rakhshandehroo M, Knoch B, Muller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010;2010:612089. https://doi.org/10.1155/2010/612089
- Li H, Ma Z, Jia L, et al. Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism. Sci Rep 2016;6:31766. https://doi.org/10.1038/srep31766
- Ouyang YB, Lu Y, Yue S, Giffard RG. MiR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 2012;12:213-9. https://doi.org/10.1016/j.mito.2011.09.001
- Mintz PJ, Saetrom P, Reebye V, et al. MicroRNA-181a* targets nanog in a subpopulation of CD34+ cells isolated from peripheral blood. Mol Ther Nucleic Acids 2012;1:e34. https://doi.org/10.1038/mtna.2012.29
- Li H, Chen X, Guan L, et al. MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS One 2013;8:e71568. https://doi.org/10.1371/journal.pone.0071568
- Ouyang D, Xu L, Zhang L, et al. MiR-181a-5p regulates 3T3-L1 cell adipogenesis by targeting Smad7 and Tcf7l2. Acta Biochim Biophys Sin 2016;48:1034-41. https://doi.org/10.1093/abbs/gmw100
- Zhang Z, Gao Y, Xu MQ, et al. MiR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1. Gene 2019;681:45-51. https://doi.org/10.1016/j.gene.2018.09.046
- Chu B, Wu T, Miao L, Mei Y, Wu M. MiR-181a regulates lipid metabolism via IDH1. Sci Rep 2015;5:8801. https://doi.org/10.1038/srep08801