• Title/Summary/Keyword: Specific heat at High Temperature

Search Result 157, Processing Time 0.032 seconds

The Effect of Strain Rate on Texure Formation Behaviors in AZ80 Magnesium Alloy (고온변형 중의 AZ80 마그네슘합금의 집합조직 형성거동에 영향을 미치는 변형속도의 영향)

  • Bae, Sangdae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.296-302
    • /
    • 2020
  • Magnesium alloys have been rapidly attracting as lightweight structural material in various industry fields because of having high specific strength and low density. It is well known that the crystallographic texture plays an important role in improvement of poor room temperature ductility of magnesium alloys. In this study, high-temperature plane strain compression deformation was conducted on extruded AZ80 magnesium alloy at 723K by varying the strain rates ranging from 5.0×10-3s-1 to 5.0×10-2s-1 in order to investigate the behaviors of texture formation. It was found that texture formation behaviors in three kinds of specimens were affected by continuous and discontiuous deformation mechanism.

Ceramic Application for Regenerative Burner System (세라믹스의 축열연소시스템 응용)

  • 한동빈;박병학;김영우;배원수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.497-503
    • /
    • 1999
  • Recently regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system the regenrative one has the several merits such as higher fuel efficiency light weigh of apparatus low harmful toxic gas and homogeneous heating zone etc. The regenerative material a very important component of the new regenerative burner system should possess the properties of low specific density higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study alumina ball alumina tube 3-D ceramic foam and hoeycomb as regenerative materials were tested and evaluated. The computer silumation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature.

  • PDF

Effects of Pouring Temperature and Alloying Elements on Damping Capacity and Mechanical Properties in 3.6%C Grey Cast Iron (3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 주입온도 및 합금원소 첨가의 영향)

  • Kim, J.C.;Baik, S.H.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.231-238
    • /
    • 2000
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of pouring temperature on the damping capacities and mechanical properties were investigated in 3.6%C cast iron. At $1400^{\circ}C$, specific damping capacity showed the maximum value, and decreased with increase pouring temperature. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ni on the damping capacities and mechanical properties have been investigated in 3.6%C gray cast iron. At 0.2%Ni content, specific damping capacity showed the maximum value, and decreased with further increase in Ni content. Graphite length also showed same behavior. This indicates that the specific damping capacity has a close relation with graphite length. In case of Mo addition in 3.6%C-0.2%Ni cast iron, specific damping capacity and tensile strength was 27% and $20kgf/mm^2$ at 3.6%C-0.2%Ni-0.3%Mo cast iron respectively.

  • PDF

Study on the Correlation between Thermal Characteristics and Heat Accumulation in the Coal Pile (석탄의 열적 특성과 석탄 내부의 승온 특성과의 상관관계 연구)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.58-64
    • /
    • 2010
  • Spontaneous ignition tests of five different coals with non-iso-thermal and iso-thermal test method based on the standard test procedure of NF T20-036 were carried. These five coals included the 2 low rank coals and 3 bituminous coals. Test results showed that the ignition temperatures of all coals at the iso-thermal conditions were higher than that of non-isothermal condition, and those of low rank SM and BR coal in both nonisothermal and isothermal conditions were lower than bituminous AN and CN coals. The chemical species of coals such as oxygen and hematite also plays an important role in enhancing the ignition rate that the ignition temperature of SM coal was lowered. The heat accumulation tendency of five coals inside outdoor stack pile was monitored with emphasis on the change in the temperature of the coal depth in stack pile. In case of low rank BR coal, its temperature inside coal stack pile due to the rate of high heat accumulation and oxidation was $59^{\circ}C$ compared to $51^{\circ}C$ for other SW bituminous coal. And the heat accumulation rate inside coal stack piles was increased with increased the Cp value which it was defined as the specific heat of coal at constant pressure, whereas other factors such as thermal diffusivity and conductivity of coal relatively had less effect on heat accumulation.

A Study of Production, Hot Consolidation, Secondary Recrystallization and Mechnical Property Assesment of Mechanically Alloyed $NiAl-Fe-AiN-Al_2O_3$ (기계적 합금화에 의한 $NiAl-Fe-AIN-Al_2O_3$ 합금분말의 제조, 열간 성형, 이차재결정화 및 기계적 성질 평가에 관한 연구)

  • 이순철
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.111-118
    • /
    • 1999
  • Ni(Fe)Al powders containing a homogeneous distribution of the in-situ formed AIN and $Al_2O_3$ dispersoids have been produced by mechanical alloying process in a controlled atmosphere using high energy attrition mill. The powders have been successfully consolidated by hot extrusion process. The phase information investigated by TEM and XRD analysis reveals that Fe can be soluble up to 20% to the NiAl phase ($\beta$) at room temperature after MA process. Subsequent thermomechanical treatment under specific condition has been tried to induce secondary recrystallization (SRx) to improve high temperature properties, however, the clear evidence of SRx was not obtained in this material. Mechanical properties in term of strength at room temperature as well as at high temperatures have been improved by the addition pf AIN, and the room temperature ductility has been shown to be improved after heat treatment, presumably due to the precipitation of second phase of $\alpha$ in this material.

  • PDF

The Effct of SHS Reaction Heat Control on the Microstructure of TiAl (고온 자전 합성시 반응열 제어가 TiAl 미세 조직에 미치는 영향에 관한 연구)

  • Mun, Jong-Tae;Yeom, Jong-Taek;Sin, Bong-Mun;Kim, Yong-Seok;Lee, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.869-879
    • /
    • 1995
  • TiAi intermetallic compound has been extensively studied for possible high temperature structural applications because of its high specific strength at high temperature, high creep resistance, and good oxidation resistance at elevated temperatures. In addition to its good properties, an economic manufacturing routes should be developed for this material to be used more extensively. One of the promising route in manufacturing TiAl intermetallics is the Self-propagating High-temperature Synthesis (SHS) method. Thus in this study, an attempt was made to study the mechanism of the SHS process in TiAl synthesis. The composition of the sample was Ti-(45, 50, 53)at% Al and the microstuctures of the products were analyzed using optical microscope and scanning electron microscope. When the phases formed at the main SHS reaction of whicyh combustion temperature is higher than the melting temperature of aluminum were identified as TiAl and Ti$_3$Al ; Ti$_3$Al cores surrounded by TiAl phase. In order to increase the combustion temperature, carbon was added 5 and 10at.%. When the carbon content was 10at.%, the heat of the reaction was large enough to melt the phase formed and that is consistent with the theoretical calculation results of the adiabatic temperature. The combution temperatue, which was measured by a computer data acquisition system, increased with the carbon content. The phases formed from the reaction involving the carbon added were indentified as TiAl and Ti$_2$AlC using XRD. The vickers hardness of the reaction product increased with the carbon content.

  • PDF

Estimation of the air temperature over the sea using the satellite data

  • Kwon B. H.;Hong G. M.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.392-393
    • /
    • 2005
  • Due to the temporal and spatial simultaneity and the high-frequency repetition, the data set retrieved from the satellite observation is considered to be the most desirable ones for the study of air-sea interaction. With rapidly developing sensor technology, satellite-retrieved data has experienced improvement in the accuracy and the number of parameters. Nevertheless, since it is still impossible to directly measure the heat fluxes between air and sea, the bulk method is an exclusive way for the evaluation of the heat fluxes at the sea surface. It was noted that the large deviation of air temperature in the winter season by the linear regression despite good correlation coefficients. We propose a new algorithm based on the Fourier series with which the SST and the air temperature. We found that the mean of air temperature is a function of the mean of SST with the monthly gradient of SST inferred from the latitudinal variation of SST and the spectral energy of air temperature is related linearly to that of SST. An algorithm to obtain the air temperature over the sea was completed with a proper analysis on the relation between of air temperature and of SST. This algorithm was examined by buoy data and therefore the air temperature over the sea can be retrieved based on just satellite data.

  • PDF

Development of New Ni-based Cast Superalloy with Low Density and High Temperature Capability for Turbine Wheel in Automotive Turbocharger (자동차 터보충전기 터빈휠용 경량 고내열 주조 Ni기 초합금의 개발)

  • Yutaro Oki;Yoshinori Sumi;Yoshihiko Koyanagi
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.392-397
    • /
    • 2022
  • In order to compliant the stringent exhaust emission regulations, higher fuel efficiency and cleaner exhaust gas in combustion engines have been required. To improve combustion efficiency, an exhaust gas temperature is increasing, therefore higher temperature resistance is required for components in exhaust system, especially turbine wheel in turbocharger. IN100 looks quite attractive candidate as it has high temperature properties with low density, however it has low castability due to poor ductility at high temperature. In this study, the balance of Al and Ti composition was optimized from the base alloy IN100 to improve the high temperature ductility by expanding the γ single phase region below the solidification temperature, while obtaining the high temperature strength by maintaining the volume fraction of γ' phase equivalent to IN100 around 1000℃. Furthermore, the high temperature creep rupture life increased by adding a small amount of Ta. The alloy developed in this study has high castability, low density and high specific strength at high temperature.

Effect of Deformation Temperature and Manganese Contents on the Tensile Properties of Fe-Cr-Ni-Mn Duplex Stainless Steel (Fe-Cr-Ni-Mn 2 상 스테인레스강의 인장성질에 미치는 변형온도 및 Mn 함량변화의 영향)

  • Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.44-52
    • /
    • 1991
  • The effect of deformation temperature and manganes contents on the tensile properties of duplex stainless steels with the structure of both ferrite and austenite were investigate. For this investigation, Fe-19% Cr-5% Ni-4~8% Mn alloys were prepared. The result obtained from this experiment are summerized as follows. With decreasing deformation temperature, tensile strengths of duplex stainless steel increased. Elongation showd to be increased and then decreased after representing the highest value at specific temperature. Tensile properties of duplex stainless steel were controlled by TRIP behavior in this experimental range of austenite contents. Tensile strengths decreased with increasing Mn contents. With increasing Mn contents, elongation decreased in the high temperature region, but increased in the low temperature region. The peak temperature representing the maximum elongation were changed to low temperature and the width of peak appeared to be broaden with increasing Mn contents.

  • PDF

Thermal Properties of Buffer Material for a High-Level Waste Repository Considering Temperature Variation (고준위폐기물 처분시설 완충재의 온도변화에 따른 열물성)

  • Yoon, Seok;Kim, Geon-Young;Park, Tae-Jin;Lee, Jae-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.25-31
    • /
    • 2017
  • The buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW). As the buffer is located between a disposal canister and host rock, it is indispensable to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. Since high quantity of heat from a disposal canister is released to the surrounding buffer, thermal properties of the buffer are very important parameters for the analysis of the entire disposal safety. Especially, temperature criteria of the compacted bentonite buffer can affect the design of HLW repository facility. Therefore, this paper investigated thermal properties for the Kyungju compacted bentonite buffer which is the only bentonite produced in South Korea. Hot wire method and dual probe method were used to measure thermal conductivity and specific heat capacity of the compacted bentonite buffer according to the temperature variation. Thermal conductivity and specific heat capacity were decreased dramatically when temperature variation was between $22^{\circ}C{\sim}110^{\circ}C$ as degree of saturation decreased according to the temperature variation. However, there was little variation under the high temperature condition at $110^{\circ}C{\sim}150^{\circ}C$.