• Title/Summary/Keyword: Specific emissions

Search Result 334, Processing Time 0.026 seconds

A Case Study on the Calculation of Greenhouse Gas Emissions in Research and Development Activities of Geo-Technology in Korea: A Study on the Basic Projects of the Korea Institute of Geoscience and Mineral Resources (지질자원기술분야 연구개발활동 온실가스 배출량 산정 사례연구 - 한국지질자원연구원 기본사업을 대상으로 -)

  • Seong-Yong Kim;Chul-Ho Heo;Il-Hwan Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.147-166
    • /
    • 2023
  • This study aimed to develop and apply guidelines for calculating greenhouse gas emissions to activate the contribution of the Korea Institute of Geoscience and Mineral Resources (KIGAM) for institutional-level research activities. In addition, we intended to improve awareness by identifying greenhouse gas emissions from KIGAM's basic research and development (R&D) activities in fiscal 2022. Herein, the research plan and budget contents of individual projects were analyzed, whilst the boundaries and scopes of greenhouse gas emissions were determined, with 22 cases being derived as either direct, indirect, or other sources of emissions. Subsequently, research activity emissions were calculated by emission source. The greenhouse gas emissions of KIGAM's 2022 basic project R&D activities were 2,041.506 tCO2eq, of which direct emissions were 793.235 tCO2eq (38.86%), indirect emissions comprised 305.647 tCO2eq (14.97%), whilst other emissions were 942.624 tCO2eq (46.18%). In particular, greenhouse gas emissions per 100 million won in the KIGAM's basic projects for fiscal 2022 (a total of 96.661 billion won) was calculated as 2.11 tCO2eq, whilst greenhouse gas emissions per participating researcher (was 4.800 tCO2eq. Such calculations should be carried out annually rather than once and accumulated for at least 5 years. Accordingly, it will be possible to standardize specific matters that influence emissions according to differences in research field characteristics and methods, thus guiding greenhouse gas emission reduction management in the future and evaluating the contributions of Environmental, Social and Governance (ESG) management to the environmental sector.

Data Build-up for the Construction of Korean Specific Greenhouse Gas Emission Inventory in Livestock Categories

  • Won, S.G.;Cho, W.S.;Lee, J.E.;Park, K.H.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • Many studies on methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock industries have revealed that livestock production directly contributes to greenhouse gas (GHG) emissions through enteric fermentation and manure management, which causes negative impacts on animal environment sustainability. In the present study, three essential values for GHG emission were measured; i.e., i) maximum $CH_4$ producing capacity at mesophilic temperature ($37^{\circ}C$) from anaerobically stored manure in livestock category ($B_{0,KM}$, Korean livestock manure for $B_0$), ii) $EF_{3(s)}$ value representing an emission factor for direct $N_2O$ emissions from manure management system S in the country, kg $N_2O-N$ kg $N^{-1}$, at mesophilic ($37^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures, and iii) $N_{ex(T)}$ emissions showing annual N excretion for livestock category T, kg N $animal^{-1}$ $yr^{-1}$, from different livestock manure. Static incubation with and without aeration was performed to obtain the $N_2O$ and $CH_4$ emissions from each sample, respectively. Chemical compositions of pre- and post- incubated manure were analyzed. Contents of total solids (% TS) and volatile solid (% VS), and the ratio of carbon to nitrogen (C/N) decrease significantly in all the samples by C-containing biogas generation, whereas moisture content (%) and pH increased after incubation. A big difference of total nitrogen content was not observed in pre- and post-incubation during $CH_4$ and $N_2O$ emissions. $CH_4$ emissions (g $CH_4$ kg VS-1) from all the three manures (sows, layers and Korean cattle) were different and high C/N ratio resulted in high $CH_4$ emission. Similarly, $N_2O$ emission was found to be affected by % VS, pH, and temperature. The $B_{0,KM}$ values for sows, layers, and Korean cattle obtained at $37^{\circ}C$ are 0.0579, 0.0006, and 0.0828 $m^3$ $CH_4$ kg $VS^{-1}$, respectively, which are much less than the default values in IPCC guideline (GL) except the value from Korean cattle. For sows and Korean cattle, $N_{ex(T)}$ values of 7.67 and 28.19 kg N $yr^{-1}$, respectively, are 2.5 fold less than those values in IPCC GL as well. However, $N_{ex(T)}$ value of layers 0.63 kg N $yr^{-1}$ is very similar to the default value of 0.6 kg N $yr^{-1}$ in IPCC GLs for National greenhouse gas inventories for countries such as South Korea/Asia. The $EF_{3(s)}$ value obtained at $37^{\circ}C$ and $55^{\circ}C$ were found to be far less than the default value.

The Impact of Population Aging on Energy Use and Carbon Emissions in Korea (인구 고령화가 에너지 사용과 탄소 배출에 미치는 영향)

  • Kim, Dong Koo;Park, Sunyoung
    • Journal of Environmental Policy
    • /
    • v.13 no.2
    • /
    • pp.99-129
    • /
    • 2014
  • This research estimates the impact of population aging on energy use and carbon emissions by energy sources and by industrial sectors in Korea until 2035. For the estimation, the structural change in household consumption expenditure identified by the age-specific consumption pattern was analyzed in conjunction with energy and environment input-output tables. The estimation result presents that, despite the population aging, energy use and carbon emissions induced by household consumption continue to increase until 2026, and then that elevated levels of energy use and carbon emissions will be maintained for a considerable period of time. According to the estimation by energy sources, the use of natural gas will show substantial increase while the use of crude oil will switch to a downturn at a relatively early period. According to the estimation by industrial sectors, carbon emissions in the sectors with relatively high consumption share of old households such as medical health, dwelling, lighting, heating, air-conditioning, and food will have substantial increase, whereas those in the sectors associated with education, transport, catering, and accommodation services will turn downward relatively early. In addition, the study analyzes through policy simulation the impact of aging-related policy similar to the basic pension system, which is recently being discussed for legislation, on energy use and carbon emissions.

  • PDF

Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine (와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선)

  • Lee, Chang-Kyu;Huh, Yun-Kun;Seo, Sin-Won
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.

The correlation among the GHG (Greenhouse Gas) emission, energy consumption and economic growth for the 6 specific regions in Korea by using Panel approaches:By Testing of the EKC(Environmental Kuznets Curve) (패널분석을 이용한 6대 권역별 대기오염물질에 대한 환경규제와 경제성장 간의 상호관계분석: EKC(환경쿠즈네츠곡선)가설을 중심으로)

  • Park, Chuhwan
    • Journal of Environmental Policy
    • /
    • v.12 no.2
    • /
    • pp.59-86
    • /
    • 2013
  • We analyzed the correlation among the GHG (Greenhouse Gas) emission, energy consumption and economic growth for the 6 specific regions in Korea by using Panel approaches with the test of the EKC hypothesis. We also analyzed the effects of environmental regulation on GHG and economic growth. The results show that by testing of the EKC (Environmental Kuznets Curve) hypothesis model,the effects of the environmental regulation and the structure of industries on GHC emission have a significant result on the regional analysis for SOx. For the NOx and TSP, only TK region passed the turning point of the EKC among the 6 specific regions. And, for the Co, the Central, Honam and the PUKN region passed the turning point of the EKC. This is because GHG emissions by the environment regulation had a weak path effect and also regional industry structures had a weak relation with regional GHG emissions.

  • PDF

The effect of heat exchanger type for exhaust heat recovery system on diesel engine performance (배기 열 회수 열교환기 형식이 디젤 엔진 성능에 미치는 영향)

  • Kim, Cheol-Jeong;Choi, Byung-Chul;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.639-647
    • /
    • 2014
  • Due to global warming and depletion of fossil fuels, technologies reducing $CO_2$ emission and increasing fuel efficiency simultaneously are required. An exhaust gas heat recovery system is a technology to satisfy both issues. This study analyses three types of heat exchanger installed on an exhaust pipe. In case of plate type heat exchanger, back pressure rapidly increased and maximum cylinder pressure reduced in high speed and maximum load, and back pressure increased over twice and specific fuel consumption also increased up to 2% which were the highest increasing rate. In case of fin tube type, the amounts of exhaust emissions and specific fuel consumption rate were less than the other two types. The effect of shell and tube was in the middle. Making a decision by only the effect on engine performance, a fin tube type is the best for exhaust heat recovery systems.

Quality Improvement of Greenhouse Gas Inventories by the Use of Bottom-Up Data (상향식 자료를 이용한 온실가스 인벤토리의 품질 개선 방향 - 화학, 금속 분야를 중심으로 -)

  • Choi, Eunhwa;Shin, Eunseop;Yi, Seung-Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.161-174
    • /
    • 2014
  • The methodology report '2006 IPCC Guidelines for National Greenhouse Gas Inventories' shows higher tier method can be a good practice, which uses country-specific or plant-specific data when calculating greenhouse gas emissions by country. We review the methodology report to present principles of using plant-level data and also examine examples of using plant-level data in chemical and metal industry in 20 countries for the purpose of quality improvement of national greenhouse gas inventories. We propose that Korea consider utilizing plant-level data, as reported according to 'Greenhouse gas and Energy Target Management Scheme', in the following order as a preference. First, the data can be utilized for quality control of Korea's own parameters, when Tier 2 method is adopted and bottom-up approach is not applicable. Second, both plant-level data and IPCC default data can be used together, combining Tier 1 method with Tier 3 method. Third, we can also use acquired plant-level data and country specific parameters, combining Tier 2 method with Tier 3 method. Fourth, if the plant-level data involves all categories of emissions and the data is proven to be representative, we can apply Tier 3 method. In this case, we still need to examine the data to check its reliability by a consistent framework, including appropriate quality control.

A Study on the Combustion Characteristics of Ultra High Pressure Fuel Injection System in a Diesel Engine(I) (초고압 연료분사장치 디젤기관의 연소특성에 관한 연구(I))

  • Choi, D.S.;Rhee, Kyung-Tai
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.34-44
    • /
    • 1999
  • The purposes of this study were to evaluate engine performance and to analyze smoke emission characteristics for varied injection pressures and engine operating conditions of an electronically-controlled ultra high pressure fuel injection system(UHPFIS). It was discovered that the engine performance with the present UHPFIS was far better than what was initially expected. And the UHPFIS permitted engine operation at air/fuel ratios richer than 20 : 1 without increasing smoke emissions. It was discovered that the indicated mean effective pressure was increased, while the specific fuel consumption and the amount of soot were decreased, as the fuel rail pressures were improved atomization of the fuel spray. As the intake air temperature was increased from $38\sim205^{\circ}C$ in 38 degree increments, the indicated mean effective pressure was dropped while the specific fuel consumption was increased.

  • PDF

A Study on Performance Characteristics in a LPG Fueled Engine (LPG 연료기관의 성능특성에 관한 연구)

  • Cho, K.H.;Baek, T.S.;Paek, Y.;Lee, J.T.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1203-1210
    • /
    • 2001
  • This study was carried out to develop an engine for off-road vehicles especially for farm tractors using the liquefied petroleum gas (LPG) which is known as a source of energy having good potential of substitute fuel for diesel engine because of its economical advantage and low pollutant materials after combustion. The study was focused on develop an engine of high in specific power output, low in specific fuel consumption and emission of pollutants. A series of teat was dope on the engine - various laboratory tests to analyze performance of the engine and actual field tests with the engine installed on a farm tractor as a power source.

  • PDF

An Experimental Study on Combustion Characteristics of Biodiesel Fuel in Marine Diesel Engine (선박디젤기관에서 바이오디젤연료의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.29-35
    • /
    • 2015
  • Environmental pollution is produced by consumption of fossil fuel, therefore alternative fuels is interested for development of new energy resources and reduction of exhaust emissions for air pollution prevention. Biofuels are produced from new vegetable oil and animal fat, may be used as fuel without change of engine structure in diesel engine. In this paper, the test results on specific fuel consumption, combustion characteristics of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodiesel was produced from biodiesel fuel at our laboratory by ourselves. This study showed that specific fuel consumption is increased slightly, on the other hand cylinder pressure, rate of pressure rise, rate of heat release and soot were decreased slightly in the case of biodiesel blends than neat diesel oil.