• 제목/요약/키워드: Specific capacity

검색결과 1,540건 처리시간 0.024초

제주도 지하수의 우물 비양수량자료를 이용한 대수층상수 결정방법 (Determination of Aqnifer Characteristics from Specific Capacity Data of Wells in Cheju Island)

  • 최병수
    • 대한지하수환경학회지
    • /
    • 제6권4호
    • /
    • pp.180-187
    • /
    • 1999
  • 일반적으로 비양수량은 쉽게 구해지지만 투수량계수를 구하려면 정규 양수시험을 시행하는데 많은 시간과 비용이 소요되기 때문에 비양수량 자료로부터 투수량계수를 추정하는 방법이 이용되기도 한다. 대개 Theis(1963). Brown (1963). Logan(1964)등이 유도한 해석적 방법이 이용되는데 이 방법들은 충적 대수층에서 영향반경 또는 저류계수등을 가정하여 대입하므로서 비양수량으로부터 투수량계수를 예측하는 것이 통상적이다. 그러나 암반 대수층이나 비균질 대수층에서 이렇게 구한 투수량계수는 실측된 투수량계수와 잘 맞지 않는다. Razack-Huntley(1991). Huntley-Steffey(1992). Mace(1997) 등은 비균질 충적대수층, 균열암반대수층. 용해성 석회암대수층 등에서 비양수량과 투수량계수의 관계식을 제시하였다. 본 연구에서는 제주도의 화산암 대수층에서 투수량계수와 비양수량 자료를 비교 분석한 바. 투수량계수의 대수값과 비양수량의 대수값 사이에 선형적인 관계가 성립(상관계수 0.951)하는 것을 확인 하였다. 또한 투수량계수의 $\pm$0.25 log cycle 범위내에 대부분의 자료가 포함되고 있다(96.6%).

  • PDF

저 열팽창 주철의 진동감쇠능에 미치는 흑연 및 탄화물의 영향 (Effects of Graphites and Carbides on the Specific Damping Capacity of Low Thermal Expansion Cast Irons)

  • 문병문;홍준표
    • 한국주조공학회지
    • /
    • 제17권1호
    • /
    • pp.51-57
    • /
    • 1997
  • Effects of the amount of flake type graphite, morphology and (V,Mo)carbides on the specific damping capacity of austenitic low thermal expansion cast irons were investigated. Specific damping capacity(SDC) of low thermal expansion cast irons increased with the increased amount of graphite. Specific damping capacity of low thermal expansion cast iron decreased with the increased Young's modulus. In the case of V and Mo addition, SDC decreased with the increased amount of carbides. Specific damping capacity increased about 2% by the movement of magenetic domains which appeared in ferromagnetic materials.

  • PDF

열경화성 수지의 온도에 따른 경화도와 비열(Cp) 변화 (The Change of Degree of Cure and Specific Heat Capacity According to Temperature of Thermoset Resin)

  • 신동우;황성순;이호성;김진원;최원종
    • Composites Research
    • /
    • 제28권3호
    • /
    • pp.99-103
    • /
    • 2015
  • 본 논문에서는 복합재료 제조공정 중 온도에 따른 경화 반응을 이해하고 열분석을 수행하였으며, 이 결과를 바탕으로 온도에 따른 수지의 경화도 및 비열의 변화를 수식화하였다. 온도에 따른 경화도와 비열은 DSC와 MDSC (Modulated DSC)를 활용하여 측정하였다. DSC와 MDSC 분석은 Isothermal과 Dynamic 조건으로 수행하여 Cure Kinetics, 유리전이온도 및 비열을 측정하고, 회기 분석 방법을 이용하여 물성거동을 수학적으로 모델링하였다.

리튬이온전지용 음극 활물질 하이브리드형 탄소의 전기화학적 특성 (The electrochemical properties of hybrid carbon as a negative active material for lithium ion batteries)

  • 양동복;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 제6회 학술대회 논문집 일렉트렛트 및 응용기술연구회
    • /
    • pp.27-30
    • /
    • 2004
  • Different types of hybrid negative materials on pitch based carbon and natural graphite for lithium ion batteries were studied. Two types of active materials were prepared, that is, pitch based graphite carbon, and pitch based carbon impregnating natural graphite. The specific capacity, capacity recovery in high temperature condition, and other electrochemical properties were achieved for these materials. We found that addition of natural graphite type to the pitch based carbon can significant1y improve the specific capacity and interfacial resistance. However, use of natural graphite will cause a serious capacity loss in the high temperature condition owing to its increasing interface resistance. The specific capacity ranged from 321 to 348 mAh/g and the maximum specific capacity was obtained in the case of pitch based carbon impregnating natural graphite.

  • PDF

${\cdot}$부극 재료의 특성에 따른 리튬이온전지의 용량설계 (Capacity Design of Lithium Ion Battery Based on the Characteristics of Materials)

  • 문성인;도칠훈;윤성규;염덕형
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 1998년도 전지기술 심포지움
    • /
    • pp.7-27
    • /
    • 1998
  • In order to design capacity of lithium ion battery, some calculations were carried out based on the characteristics of materials by the given battery shape and dimension. The principle of design was built by the interpretation of the correlation of material, electrochemical and battery factors. Parameters of materials are fundamental physical properties of constituent such as cathode. separator, anode, current collectors and electrolyte. Electrochemical factor includes potential pattern as a function of specific capacity, specific discharge capacity(or initial irreversible specific capacity or Ah efficiency) as a function of specific charge capacity and material balancing. Parameters of battery are dimension, construction hardware and performance. Battery capacity was simulated for a lithium cobalt dioxide as cathode and a hard carbon as anode to achieve 1100 mAh for the charge limit voltage of 4.2V, the weight ratio(+/-) of 2.4 and ICR18650. A fabricated test cell (ICR18650) which have weight ratio(+/-) of 2.4 discharged to 1093 mAh for the charge limit voltage of 4.2V. The sequential discharge capacity show good correspondence with designed capacity.

  • PDF

3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 주입온도 및 합금원소 첨가의 영향 (Effects of Pouring Temperature and Alloying Elements on Damping Capacity and Mechanical Properties in 3.6%C Grey Cast Iron)

  • 김정철;백승한;최종술
    • 열처리공학회지
    • /
    • 제13권4호
    • /
    • pp.231-238
    • /
    • 2000
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of pouring temperature on the damping capacities and mechanical properties were investigated in 3.6%C cast iron. At $1400^{\circ}C$, specific damping capacity showed the maximum value, and decreased with increase pouring temperature. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ni on the damping capacities and mechanical properties have been investigated in 3.6%C gray cast iron. At 0.2%Ni content, specific damping capacity showed the maximum value, and decreased with further increase in Ni content. Graphite length also showed same behavior. This indicates that the specific damping capacity has a close relation with graphite length. In case of Mo addition in 3.6%C-0.2%Ni cast iron, specific damping capacity and tensile strength was 27% and $20kgf/mm^2$ at 3.6%C-0.2%Ni-0.3%Mo cast iron respectively.

  • PDF

서울-천안 구간의 열차운행패턴 분석과 시사점 (KTX Impact on Train Operation Pattern (An Empirical Analysis))

  • 김경태;이진선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1047-1053
    • /
    • 2005
  • This study explored pattern of train operation between Seoul Cheonan after the introduction of KTX in 2004. Both number of trains and seat capacity per day have increased but maximum number of trains per specific hour hasn't changed much. Demand for train shows that it concentrated in a specific time, so number of trains during the peak hour should be increased. But, it is difficult due to line capacity, so increasing seat capacity per train might be an option. An increase in seat capacity should be considered the characteristics of each train lines.

  • PDF

3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 Sb 및 Ti 첨가의 영향 (Effects of Alloying Elements(Sb, Ti) on Damping Capacity and Mechanical Properties In 3.6%C Gray Cast Iron)

  • 김정철;한동운;백승한;최종술
    • 열처리공학회지
    • /
    • 제14권6호
    • /
    • pp.330-335
    • /
    • 2001
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which Is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of Sb on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni gray cast iron. At 0.02%Sb, specific damping capacity showed the maximum value, and decreased with further increase in Sb content. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ti on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni-0.02%Sb gray cast iron. Specific damping capacity increased with increase in Ti content. Graphite length also showed same behavior. Tensile strength increased with Ti content due to refinement of pearlite. In the case of 0.14%Ti addition in 3.6%C-0.2%Ni-0.02%Sb cast iron, specific damping capacity and tensile strength was 36% and 25 $kgf/mm^2$ which are higher than 32% and 15 $kgf/mm^2$ at 3.6%C-0.2%Ni cast iron respectively.

  • PDF

열전지용 FeS2 박막전극의 전기화학적 특성 (Electrochemical Properties of FeS2 Thin Film Electrodes for Thermal Batteries)

  • 임채남
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.318-324
    • /
    • 2017
  • Powder compaction technology is widely used to prepare thermal battery components. This method, however, is limited by the size, thickness, and geometry of the battery components. This limitation leads to excessive cell capacity, overweight, and higher cost of the pellets, which decreases the specific capacities and delays the activation time of thermal batteries. $FeS_2$ thin-film cathodes were fabricated by tape-casting technology and analyzed by SEM and EDS in this paper. The residual organic binder of the $FeS_2$ thin-film cathodes decreased with the temperature of the heat treatment, which improved the specific capacity because of the lower resistance. Specific capacities of the $FeS_2$ thin-film cathodes decreased because of the higher residual binder and the restrictive reaction of active materials with molten salts as the thickness increased. $FeS_2$ thin-film cathodes showed much higher specific capacity (1,212.2 As/g) than pellet cathodes (860.7 As/g) at the optimal heat-treatment temperature ($230^{\circ}C$).

등온열량계를 사용한 고흡수성 재료의 유효흡수율 측정: 비표면적의 영향 (Effective Absorption Capacity of Highly Absorptive Materials using Isothermal Calorimetry, Considering the Effect of Specific Surface Area)

  • 이보연
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.49-56
    • /
    • 2018
  • The use of highly absorptive materials in cement-based materials is increasing for internal curing purpose. However, calculation of correct absorption capacity of such materials is not easy, which leads to change in the effective water-to-cement ratio of cement paste by either absorbing or releasing water. In this study, effective absorption capacity of a highly absorptive material was found using isothermal calorimetry. Moreover, the effect of specific surface area was investigated. It was found that the method was capable of finding effective water absorption capacity of activated carbon fiber. For the activated carbon fiber used in this research, the effect of specific surface area was negligible because the high BET surface area was due to micropores less than 1nm, which does not affect the rate of hydration curve. Thus, the effective absorption capacity of such materials can be found successfully using this method.