• 제목/요약/키워드: Specific binding

검색결과 1,279건 처리시간 0.031초

SPR-based Antibody-Antigen Interaction for Real Time Analysis of Carbamate Pesticide Residues

  • Yang, Gil-Mo;Kang, Suk-Won
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.15-19
    • /
    • 2008
  • This research was conducted to develop a quick and sensitive method of detecting carbamate residues using the immobilization of antibody-antigen interactions with surface plasmon resonance (SPR). We have used commercialized surface plasmon resonance equipment (Biacore 3000). The antibody used for the immunoassay was specific for glutathione-s-transferase (GST) and the antigens included several carbamate pesticides (carbofuran, carbaryl, and benfuracarb). When antigens were applied to the protein GST, the detection limit was 2 ng/mL of carbamate pesticide. The fabricated protein GST maintained its activity for over 200 measurements. Thus we determined that the SPR biosensors could detect the specific reversible binding of a reactant in solution to a binding partner immobilized on the surface of the sensor and allow real-time detection and monitoring.

Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis

  • Zhang, Xiaohan;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • 제25권1호
    • /
    • pp.26-43
    • /
    • 2017
  • Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with ${\beta}$-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.

Nucleic Acid Aptamers: New Methods for Selection, Stabilization, and Application in Biomedical Science

  • Kong, Hoon Young;Byun, Jonghoe
    • Biomolecules & Therapeutics
    • /
    • 제21권6호
    • /
    • pp.423-434
    • /
    • 2013
  • The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex three-dimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging.

옥수수(Zea mays L.) 자엽초 조직 절편에서 n-Octanol에 의한 옥신 극성 이동 억제 (Specific Inhibition of Polar Auxin Transport by n-Octanol in Maize Coleoptiles)

  • 윤인선
    • Journal of Plant Biology
    • /
    • 제36권1호
    • /
    • pp.67-74
    • /
    • 1993
  • Both polar and gravity-induced lateral transport of auxin was markedly reduced in corn coleoptile segments by octanol treatment. Octanol enhance net auxin uptake without affecting that of benzoic acid, suggesting that the effect did not result from a nonspecific action on general membrane permeability. Since naphthylphthalamic acid (NPA) action on both transport and net uptake of auxin was substantially decreased in the presence of octanol, a specific interaction of octanol with the NPA site (efflux carrier) can be postulated. Studies on in vitro binding of NPA to membrane vesicles indicated that octanol did not interfere with NPA binding. When basipetal transport of auxin was impared by plasmolysis, octanol still inhibited auxin transport in the plasmolyzed tissues. The results ruled out the possibility of octanol acting at the plasmodesmata. Kinetic analysis of growth indicated that IAA-sustained growth was rapidly blocked by octanol implicating a common system by which auxin transport is linked to auxin action. Possible mechanisms for octanol action will be discussed.

  • PDF

Recombinant proteins of spike protein of SARS-CoV-2 with the Omicron receptor-binding domain induce production of highly Omicron-specific neutralizing antibodies

  • Hyangju Kang;Daniel Kim;Kyungmin Min;Minhee Park;Seok-Hyun Kim;Eun-Ju Sohn;Bo-Hwa Choi;Inhwan Hwang
    • Clinical and Experimental Vaccine Research
    • /
    • 제11권3호
    • /
    • pp.285-289
    • /
    • 2022
  • Various vaccines have been developed to fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic. However, new variants of SARS-CoV-2 undermine the effort to fight SARS-CoV-2. Here, we produced S proteins harboring the receptor-binding domain (RBD) of the Omicron variant in plants. Plant-produced S proteins together with adjuvant CIA09A triggered strong immune responses in mice. Antibodies in serum inhibited interaction of recombinant human angiotensin-converting enzyme 2 with RBD of the Omicron variant, but not RBD of other variants. These results suggest that antibodies induced by RBD of the Omicron variant are highly specific for the Omicron RBD, but not for that of other variants.

Aluminium and Cadmium Interfere with the Estrogen Receptor Level in the Primary Culture of Hepatocytes in the Rainbow Trout Oncorhynchus mykiss

  • Hwang Un-Gi
    • Fisheries and Aquatic Sciences
    • /
    • 제4권4호
    • /
    • pp.180-185
    • /
    • 2001
  • Al and Cd-induced inhibition of vitellogenin (VTG) production was examined at the estrogen receptor (ER) level in rainbow trout Oncorhynchus mykiss hepatocytes. The binding of $[^3H]$ $estradiol-17\beta\;(E_2)$ to hepatocytes reached a plateau 3 days after addition of $E_2\;(2\times\;10^{-6} M)$to the medium. The binding activity was linearly reduced with the increased concentrations $(-10^{-5}\;M)$ of 4-hydroxy-tamoxifen (4-OHT) and specific binding linearly increased with the increased doses of $[^3H]\;E_2$, indicating that the radioligand bound to ER. Al $(-10^{-4}\;M)$and Cd $(10^{-6}\;M)$ as well as 4-OHT $(10^{-6}\;M)$ significantly reduced the $[^3H]\;E_2$-binding activity by $30­40\%$, while they completely inhibited VTG production. Al and Cd had no effect on $E_2-human$ $ER\alpha$ binding activity at any concentrations used $(-10^5\;nM\;each)$. These results suggested that Al and Cd inhibited VTG production in part by interfereing with the ER level. Inhibitory effects of these metals on the $E_z-dependent$ upregulation of ER activity are also discussed.

  • PDF

Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder

  • Hong, Sunghyun;Choi, Sangmin;Kim, Ryeonghyeon;Koh, Junseock
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.899-908
    • /
    • 2020
  • Intrinsically disordered proteins or regions (IDPs or IDRs) are widespread in the eukaryotic proteome. Although lacking stable three-dimensional structures in the free forms, IDRs perform critical functions in various cellular processes. Accordingly, mutations and altered expression of IDRs are associated with many pathological conditions. Hence, it is of great importance to understand at the molecular level how IDRs interact with their binding partners. In particular, discovering the unique interaction features of IDRs originating from their dynamic nature may reveal uncharted regulatory mechanisms of specific biological processes. Here we discuss the mechanisms of the macromolecular interactions mediated by IDRs and present the relevant cellular processes including transcription, cell cycle progression, signaling, and nucleocytoplasmic transport. Of special interest is the multivalent binding nature of IDRs driving assembly of multicomponent macromolecular complexes. Integrating the previous theoretical and experimental investigations, we suggest that such IDR-driven multiprotein complexes can function as versatile allosteric switches to process diverse cellular signals. Finally, we discuss the future challenges and potential medical applications of the IDR research.

Mass Spectrometric Determination of Zn2+ Binding/Dissociation Constant for Zinc Finger Peptides

  • Lee, Choong Sik;Park, Soo Jin;Lee, Jae Young;Park, Sungsu;Jo, Kyubong;Oh, Han Bin
    • Mass Spectrometry Letters
    • /
    • 제6권1호
    • /
    • pp.7-12
    • /
    • 2015
  • In the present study, we proposed a simple ESI-MS model for determining $Zn^{2+}$ binding (or dissociation) constants for zinc finger peptides (ZFPs) with a unique ${\beta}{\beta}{\alpha}$ fold consensus. The ionization efficiency (response) factors for this model, i.e., ${\alpha}$ and ${\beta}$, could be determined for ZiCo ZFP with a known $Zn^{2+}$ binding constant. We could determine the binding constants for other ZFPs assuming those with a ${\beta}{\beta}{\alpha}$ consensus conformation have the same ${\alpha}/{\beta}$ response ratio. In general, the ZPF dissociation constants exhibited $K_d$ values of $10^{-7}{\sim}10^{-9}M$, while $K_d$ values for a negative control non-specific $Zn^{2+}$ peptides were high, e.g., $5.5{\times}10^{-6}M$ and $4.3{\times}10^{-4}M$ for BBA1 and melittin, respectively.

안점의 꽃갯지렁이 난포세포로 체강액 단백질의 단계특이적 유입을 위한 GTP-Binding Protein의 개입 (Involvement of GTP-Binding Proteins in Stage-Specific Receptor-Mediated Endocytosis of Coelomic Fluid Proteins into Oocytes of Pseudopotamilla occelata)

  • 남현정;강화선;이양림
    • 한국동물학회지
    • /
    • 제39권3호
    • /
    • pp.292-298
    • /
    • 1996
  • 안점의 꽃갯지렁이(Pseudopotamilla occelata)의 난자형성중 난황단백질의 전구체인 체강액 단백질(CP)은 수용체에 의해 중개되는데 이러한 수용체 중개에 의한 난모세포내로의 유입은 GTP-binding protein에 의해 조절되는 것으로 확인되었다. 체강액 단백질(CP)을 가장 활발히 투과시키는 중기 난모세포내로의 125 I-CP의 유입은 GTP에 의해 촉지되었고, GTP 유사체인 GTPrS나 GTP$\beta$S의 효과를 금입자로 표지된 체강액 단백질을 이용하여 전자현미경으로 확인해 본 결과, gold-labeled CP는 난황립에 집중되었고, 이러한 현상도 GTP에 의해서는 촉진되었고 GTPrS에 의해서는 억제되었다.

  • PDF

The Homeobox and Genetic Disease: Structure and Dynamics of Wild Type and Mutant Homeodomain Proteins

  • Ferretti, James A.
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2001
  • Structural and physical properties of type wild type and various selected mutants of the vnd/NK-2 homeodomain, the protein product of the homeobox, and the implication in genetic disease are reviewed. The structure, dynamics and thermodynamics have been Investigated by NMR and by calorimetry. The interactions responsible for the nucleotide sequence-specific binding of the homeodomain to its consensus DNA binding site have been identified. There is a strong correlation between significant structural alterations within the homeodomain or its DNA complex and the appearance of genetic disease. Mutations in positions known to be important in genetic disease have been examined carefully For example, mutation of position 52 of vnd/NK-2 results in a significant structural modification and mutation of position 54 alters the DNA binding specificity and amity The $^{15}N$ relaxation behavior and heteronuclear Overhauser effect data was used to characterize and describe the protein backbone dynamics. These studies were carried out on the wild type and the double mutant proteins both in the free and in the DNA bound states. Finally, the thermodynamic properties associated with DNA binding are described for the vnd/NK-2 homeodomain. These thermodynamic measurements reinforce the hypothesis that water structure around a protein and around DNA significantly contribute to the protein-DNA binding behavior. The results, taken together, demonstrate that structure and dynamic studies of proteins combined with thermodynamic measurements provide a significantly more complete picture of the solution behavior than the individual studies.

  • PDF