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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible 

for the coronavirus disease 2019 (COVID-19) pandemic, has caused serious health 

problems worldwide since its emergence in 2019 in Wuhan, China; indeed, it remains 

an ongoing health issue in every country on the globe [1]. Since the most effective way 

to combat virus infection is vaccination, there was a rush to develop effective vaccines 

against SARS-CoV-2 soon after its identification [2-4]. With unprecedented speed, sev-

eral vaccines were developed; these include mRNA-based vaccines (BNT162b2 and 

mRNA-1273), virus-vector vaccines (ChAdOx-1, Ad26COVs1, and Sputnik V), recom-

binant protein-based vaccines (NVX-CoV373 and Co-VLP), and inactivated virus-

based vaccines (BBIBP-CorV and CVAXIN) [5]. After emergency approval was granted, 

these vaccines were quickly introduced into the field. More vaccines are on the way.

The degree of protection afforded by these vaccines varied, but BNT162b2 and 

mRNA-1273 provided >90% protection against SARS-CoV-2 [6,7]. However, one con-

tinuing challenge is the emergence of new variants, particularly vaccine-resistant vari-

ants [8]. After identification of the original SARS-CoV-2 strain in Wuhan, China, in 

2019, numerous variants have emerged, including B.1.1.7 (Alpha), B.1.351 (Beta), P1 

(Gamma), B.1.617.2 (Delta), and Omicron (B.1.1.529) [9]. These variants harbor a dif-

ferent number of mutations from the original SARS-CoV-2 strain. Omicron harbors 34 
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Various vaccines have been developed to fight severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic. 
However, new variants of SARS-CoV-2 undermine the effort to fight SARS-CoV-2. Here, we 
produced S proteins harboring the receptor-binding domain (RBD) of the Omicron variant in 
plants. Plant-produced S proteins together with adjuvant CIA09A triggered strong immune re-
sponses in mice. Antibodies in serum inhibited interaction of recombinant human angiotensin-
converting enzyme 2 with RBD of the Omicron variant, but not RBD of other variants. These 
results suggest that antibodies induced by RBD of the Omicron variant are highly specific for 
the Omicron RBD, but not for that of other variants.
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Recombinant proteins of spike 
protein of SARS-CoV-2 with the 
Omicron receptor-binding domain 
induce production of highly 
Omicron-specific neutralizing 
antibodies
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mutations within the spike protein. Those mutations occur in 

the S1 subunit, in particular the receptor-binding domain 

(RBD). These variants show varying degrees of interaction 

with neutralizing antibodies induced by current vaccines 

[10,11]. Indeed, the new variants can cause breakthrough in-

fections in people who have been vaccinated or infected be-

fore [12]. Therefore, a new vaccine targeting new variants has 

to be developed.

In this study, we aimed to investigate the characteristics of 

antibodies induced by an S protein containing the RBD of the 

Omicron variant. First, we generated a recombinant con-

struct comprising the S protein (amino acids 14–1162) from 

the D614G variant of SARS-CoV-2 and the RBD of the Omi-

cron variant. We did this by introducing 15 Omicron-specific 

mutations into the RBD (Fig. 1A). In addition, we introduced 

three additional mutations (A942P, K986P, and V987P) to in-

crease the stability of the S protein, and deleted the furin 

cleavage site (ΔPRRA) to maintain the S protein in its prefu-

sion form. To express the S protein as a trimer, we fused the 

foldon motif of T4 fibritin to the C-terminus [13]. Additional-

ly, we added histidine and HDEL residues to the C-terminus 

as an affinity tag (for purification) and an endoplasmic retic-

ulum (ER) retention signal, respectively (Fig. 1A). Finally, a 

leader sequence (NB) from Arabidopsis BiP1 was added to 

the N-terminus (NB:S(rOmi3P)delFnL:Fd:7H:HDEL, referred 

to as pSrOmi) for ER targeting. Thus, recombinant protein 

pSrOmi was designed to be produced as a trimer in the ER of 

Nicotiana benthamiana. The construct pSrOmi was intro-

duced into the leaf tissues of N. benthamian via Agrobacteri-

um-mediated infiltration, and leaf tissues were harvested 4 

days later [14,15]. First, we examined expression of pSrOmi in 

the plants. Total soluble protein extracts were separated by 

sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

(SDS/PAGE) and analyzed by western blotting using anti-His 

antibody. As a reference, we loaded 100 ng of the recombi-

nant D614G variant S1 protein tagged with a His tag; this was 

A
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Fig. 1. Expression of pSrOmi in Nicotiana benthamiana leaves and its purification from total soluble protein extracts. (A) Schematic presenta-
tion of pSrOmi. The spike (S) protein of the severe acute respiratory syndrome coronavirus 2 D614G strain was mutated such that it contained 
the receptor-binding domain (RBD) of the Omicron variant. In addition, the S protein lacked the furin cleavage site (PRRA) and contained three 
P substitutions (A942P, K986P, and V987P). The mutated S protein was fused to the foldon motif, a histidine tag, and an endoplasmic reticulum 
(ER) retention signal (HDEL) at the C-terminus. The leader signal (NB) of Arabidopsis BiP1 is not shown because it is removed after transloca-
tion to the ER. (B) Expression of the pSrOmi protein. Total soluble protein extracts from infiltrated N. benthamiana leaf tissues were separated 
by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by western blotting using an anti-His antibody. His-
tagged S1 protein (100 ng) was used as a loading control. The immunoblot was stained with Coomassie brilliant blue (CBB). (C) Analysis of 
purified pSrOmi by SDS-PAGE. Purified pSrOmi proteins (1 and 2 μg) were separated by SDS-PAGE and stained with CBB. BSA (1 μg) was used 
as a loading control. M, protein standard marker.
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done to estimate the expression level of pSrOmi. The results 

showed that 40 μg of protein was produced by 1 g of leaf tis-

sue (Fig. 1B). Thus, expression was considered to be very 

high. Next, we purified pSrOmi from total soluble protein ex-

tracts of N. benthamiana to use to induce immune responses 

in mice. pSrOmi was purified from total soluble protein ex-

tracts using an Ni2+-IDA affinity column followed by further 

purification using a prepacked Q-HP column. The purity and 

quantity of the protein were examined by SDS/PAGE and 

Coomassie brilliant blue staining. The purity was high, with 

almost no visible contaminating proteins (Fig. 1C).

We examined the immunogenicity of pSrOmi in mice. 

Mice (BALB/c, female, 16–20 g, 5 weeks old) were intramus-

cularly injected 2 times at an interval of 3 weeks with pSrOmi 

proteins (0.1, 1, 5, or 10 μg) and CIA09A as an adjuvant 

[16,17]. All animal experiments were performed in compli-

ance with the Pohang Technopark IACUC (approval no., 

ABCC2022004). We included 10 μg of pSrOmi alone or phos-

phate-buffered saline as controls. Serum was obtained at 14 

days after the second immunization. Antigen-specific antibody 

titers in sera were measured by enzyme-linked immunosor-

bent assay after serial dilution (from 1:150 to 1:11,718,750). The 

antibody titers induced by 1, 5, or 10 μg of pSrOmi in the 

presence of CIA09A were similar (Fig. 2A), indicating that 

CIA09A increases the immunogenicity of pSrOmi. Mice that 

received 10 μg of pSrOmi alone also showed strong immune 

response. However, the immune response to 10 μg of pSrOmi 

alone was weaker than that to 0.1 μg pSrOmi plus CIA09A. 

Next, we examined the end-point titer of these vaccines dos-

es. The end-point titer ranged from 4.41 log10 for 10 μg pSrO-

mi alone to 5.53 log10 for 10 μg pSrOmi plus CIA09A (Fig. 2B).

To access the degree of protection against SARS-CoV-2 in-

fection afforded by pSrOmi-induced neutralizing antibodies, 

we examined the extent to which the neutralizing antibodies 

inhibit the interaction between the RBD and human angio-

tensin-converting enzyme 2 (hACE2), the human receptor 

for SARS-CoV-2 [18]. Current COVID-19 vaccines are thought 

to provide a certain degree of protection against newly 

emerged variants, including the Omicron variant [19,20].

Therefore, we set the cutoff value at 20%. Neutralizing anti-

bodies in sera obtained from mice injected with 1–10 μg 

pSrOmi plus CIA09A inhibited interaction between the RBD 

of Omicron and hACE2 by >90% (Fig. 3A). However, this fell 

to 79% at a dose of 0.1 μg pSrOmi plus CIA09A, and to 33% 

when using 10 μg pSrOmi alone, indicating that the titer must 

be >5 log10 to effectively inhibit interaction between RBD and 

hACE2 by >90%. Next, we accessed the cross-reactivity of 

pSrOmi-induced neutralizing antibodies with other variants 

of SARS-CoV-2. mRNA-based vaccines such as BNT162b2 

and mRNA-1273 provide >90% protection against serious 

disease after infection by the Delta variant [9,21]. However, 

other reports show that the majority of the current vaccines 

cannot neutralize the Omicron variant effectively [10,21]. 

Only 20% and 24% of BNT162b2 recipients had detectable 

neutralizing antibodies against Omicron variants HKU691 

and HKU344‐R346K, respectively [9]. Therefore, we next 

measured the ability of pSrOmi-induced neutralizing anti-

bodies to inhibit the interaction between the RBD of variants 

and hACE2. The percentage inhibition of the RBD of the Beta 

and Delta variants was close to the cutoff value (20%), or 
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Fig. 2. Analysis of antigen (Ag)-specific serum immunoglobulin G (IgG) from immunized mice at 14 dpi. (A) Antibody titration curve based on 
sera obtained from mice at 14 dpi (diluted from 1:150 to 1:11,718,750). The optical density (OD) value of the lowest three dilutions of serum 
from phosphate-buffered saline (PBS)-injected mice was multiplied by 4 to yield the titration cutoff threshold. (B) The end-point titration values. 
The end-point titer of IgG antibodies was measured in enzyme-linked immunosorbent assay coated with recombinant pSrOmi. The end-point 
titration value was expressed as log10 values.
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slightly higher (Fig. 3C, D); however, inhibition of the RBD of 

the Wuhan strain ranged from 60% to 70% (Fig. 3B). These 

data suggest almost no inhibition of the Beta and Delta vari-

ants. Thus, pSrOmi-induced neutralizing antibodies are 

highly specific for the Omicron RBD and may not provide any 

protection against other variants. One possible explanation 

for this would be that the heavily mutated RBD of the Omi-

cron variant induces Omicron RBD-specific antibodies that 

do not react with the RBD of other variants. However, this 

does not agree with data showing that three doses of mRNA-

based vaccines provide a high level of protection against the 

Omicron variant [19,20]. In animal models and humans, 

neutralizing antibodies generated by mRNA vaccines appear 

to be the primary correlate of COVID‐19 protection [22]. 

Thus, one possible explanation is that neutralizing antibodies 

induced by the original RBD recognize the RBD of the Omi-

cron variant, but not vice versa. Here, we examined inhibi-

tion of the RBD/hACE2 interaction only in vitro, but did not 

examine the degree of cross-protection against other variants 
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Fig. 3. Omicron-induced antibodies in mice are highly specific for the Omicron receptor-binding domain (RBD), and show no or greatly reduced 
reactivity with the RBDs of other variants. Mice sera were diluted 1:10 (in duplicate) and applied to the competition enzyme-linked immunosor-
bent assay plates (ACROBiosystems); the assays were based on recombinant human angiotensin-converting enzyme 2 and spike proteins from 
different variants: (A) Omicron variant, (B) Wuhan ancestor, (C) Beta variant, and (D) Delta variant. Ag, antigen. 

in vivo. Thus, further studies are necessary to understand the 

behavior of neutralizing antibodies induced by the S protein 

of the Omicron variant. However, despite this limitation, our 

results provide valuable information that may be useful for 

future development of vaccines against SARS-CoV-2 in a 

world where more variants will emerge in the future.

In conclusion, we observed that antibodies raised by S pro-

teins with RBD of the Omicron variant can inhibit interaction 

of hACE2 with the RBD of Omicron variant but not with that 

of other variants. These results suggest that vaccine generat-

ed using the Omicron variant may be specific for the protec-

tion of Omicron variant, but not other variants.
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