• Title/Summary/Keyword: Specific Stiffness

Search Result 331, Processing Time 0.035 seconds

Polymer concrete filled circular steel beams subjected to pure bending

  • Oyawa, Walter O.;Sugiura, Kunitomo;Watanabe, Eiichi
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • In view of the mounting cost of rehabilitating deteriorating infrastructure, further compounded by intensified environmental concerns, it is now obvious that the evolvement and application of advanced composite structural materials to complement conventional construction materials is a necessity for sustainable construction. This study seeks alternative fill materials (polymer-based) to the much-limited cement concrete used in concrete-filled steel tubular structures. Polymers have been successfully used in other industries and are known to be much lighter, possess high tensile strength, durable and resistant to aggressive environments. Findings of this study relating to elasto-plastic characteristics of polymer concrete filled steel composite beams subjected to uniform bending highlight the enormous increase in stiffness, strength and ductility of the composite beams, over the empty steel tube. Moreover, polymer based materials were noted to present a wide array of properties that could be tailored to meet specific design requirements e.g., ductility based design or strength based design. Analytical formulations for design are also considered.

Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube

  • Moradi-Dastjerdi, Rasool
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.441-456
    • /
    • 2016
  • This work reports wave propagation in the nanocomposite cylinders that reinforced by straight single-walled carbon nanotubes based on a mesh-free method. Moving least square shape functions have been used for approximation of displacement field in weak form of motion equation. The straight carbon nanotubes (CNTs) are assumed to be oriented in specific or random directions or locally aggregated into some clusters. In this simulation, an axisymmetric model is used and also the volume fractions of the CNTs and clusters are assumed to be functionally graded along the thickness. So, material properties of the carbon nanotube reinforced composite cylinders are variable and estimated based on the Eshelby-Mori-Tanaka approach. The effects of orientation, aggregation and volume fractions of the functionally graded clusters and CNTs on dynamic behavior of nanocomposite cylinders are studied. This study results show that orientation and aggregation of CNTs have significant effects on the effective stiffness and dynamic behaviors.

A Study on the Modal Parameters of the scaled building structure (축소 건물모델의 모달 파라미터 추정에 관한 연구)

  • Park, Hae-Dong;Park, Jin-Il;Choi, Hyun;Kim, Doo-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.571-575
    • /
    • 2000
  • The physical properties of the spatial model, mass, stiffness and damping matrix, can be defined by a specific natural frequency, damping ratio and mode shape. These modal parameters can be determined from a set of frequency response function(FRF) measured by exciting the structure and measuring the responses at various points around the structure. In this paper, The Transfer Matrix is obtained by experimental modal analysis for the 3-story scaled building model which TMD is installed on top and the physical properties of the spatial model is determined using the residue matrix and the location of poles from FRF measurement using polynomial curve fitting methods.

  • PDF

Wear Behavior of Saffil/SiCp reinforced Metal Matrix Composites at the room temperature (Saffil/SiCp을 이용한 금속 복합재료의 상온 마모 거동)

  • 조종인;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.46-49
    • /
    • 2003
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study, Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15% and Al/Saffil-5%/SiC(particle type)-15% hybird MMCs' wear behavior were characterized by the pin-on-disk test under various normal load The superior wear resistance was exhibited at Al/Saffil-5%/SiC(particle type)-15% MMCs. And this MMCs' predominant wear mechanism is subsurface cracking in the low load wear regime. Others(Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15%) showed the similar wear resistance with each other at the same test condition. In the low load & room temperature condition, the wear resistance was improved due to the high hardness of the ceramic reinforcements. As the test load increased, the wear properties were governed by the wear properties of matrix.

  • PDF

Application of Composite Materials in Korean Express Tilting Train(TTX) System (한국형 틸팅차량 시스템에서의 복합재료 적용)

  • 박기진;신광복;한성호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.65-68
    • /
    • 2003
  • Using composite materials for lilting train system has many advantages such as manufacturing variety, specific high-strength & stiffness characteristics, and long-life durability, but the strongest advantage could be the possibility of lightweight product. In the leading countries, the composite materials are used for the material fer drivers' cabs, interior/exterior equipments for railway train, and it is now developing the composite materials applied for the train car body structure. In this paper, we examine the use of composite materials for the drivers' cabs and interior/exterior equipments for the developing tilting train in Korea, and review the car body design using composite materials.

  • PDF

Study on the Composite Blast Wall Test (복합 재료 폭파 방화벽 실험 연구)

  • Yang, Hyun-jung;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.6-12
    • /
    • 2010
  • This study investigates how to apply composite material to the blast loading protection devices, mainly used for military purpose. Traditionally, earth-filled blast walls have been used for protecting important parts of military facilities and personnels. However these types of blast walls show difficulty in fabrication and portability because of their nature of heavy weight. Composite materials are known to have relatively higher specific stiffness and strength than any other metallic and earth-filled materials such as sand and gravels. Totally 4 times of TNT blast experiments were performed on the carbon/epoxy blast walls. After the end of each test, the improvement of blast wall was implemented to the structure. The test results show that the use of composite material in the blast protecting area is the one of very effective and reliable alternatives.

  • PDF

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

A Study on the Process Improvements of the Multi-stage Deep Drawing by the Rigid-plastic Finite Element Method (강소성 유한요소법을 이용한 다단계 디프드로잉의 공정개선에 관한 연구)

  • 전병희;민동균;김형종;김낙수
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.440-453
    • /
    • 1994
  • The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. Computational results on the punch/die loads and thickness distributions were compared with the experiments of the current drawing processes. Deep-drawing processes of the redesigned shell to improve the specific strength and stiffness were simulated with the numerical method developed. With varying several process parameters such as blank size, corner radii of tools, and clearances, the simulation results showed the improvements in reducing the forming loads. Also forming defects were found during simulation and appropriate blank size could be verified.

  • PDF

A study on lubrication characteristics in warm deep drawing of magnesium alloy sheet (마그네슘합금의 온간 딥 드로잉 공정에서의 윤활 특성 연구)

  • Park, S.H.;Kim, S.W.;Lee, Y.S.;Kim, B.M.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.306-309
    • /
    • 2007
  • Recently, magnesium alloys have been widely used in automotive, aerospace and electronic industries with the advantages such as lightweightness, high specific strength and stiffness. However, magnesium alloy has quite low formability at room temperature due to its hexagonal close-packed crystal structure. Warm deep drawing is one of the forming technologies to improve the formability of magnesium alloy sheet and the lubrication condition is an important process parameter in that. In this study, the drawing tests of AZ31 alloy sheet at elevated temperature for various kinds of lubricant were carried out and the effects of lubrication conditions on drawbility were investigated.

  • PDF

Analysis of the Composite Structure of Tilting Train eXpress (TTX) (한국형 고속틸팅열차(TTX)의 복합재 차체 및 접합부의 구조 해석)

  • Kim Soo-Hyun;Kang Sang-Guk;Lee Sang-Eui;Kim Chun-Gon;Shin Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.657-662
    • /
    • 2004
  • The weight reduction of carbody structures is of great concern in developing high speed tilting train for the normal operation of tilting system. The use of composite materials for the carbody structures has many advantages due to their excellent material properties such as high specific strength and stiffness. In this paper, finite clement analysis was conducted to analysis and design the composite structure of Tilting Train eXpress(TTX). According to JIS E 7105, various load tests were performed using finite element analysis and the structural safety of the composite carbody structure was inspected to determine the thickness of the composite sandwich structure. In addition, structural analysis was conducted to suggest a design of the joint part of composite carbody and metal underframe.

  • PDF