• Title/Summary/Keyword: Specific Stiffness

Search Result 331, Processing Time 0.026 seconds

Modification of Site Classification System for Amplification Factors considering Geotechnical Conditions in Korea (국내 지반 특성에 따른 합리적 증폭 계수의 결정을 위한 지반 분류 체계 개선 방안 고찰)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Dong-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.90-101
    • /
    • 2005
  • For the site characterization at two representative inland areas, Gyeongju and Hongsung, in Korea, in-situ seismic tests containing boring investigations and resonant column tests were performed and site-specific ground response analyses were conducted using equivalent linear as well as nonlinear scheme. The soil deposits in Korea were shallower and stiffer than those in the western US, from which the site classification system and site coefficients in Korea were derived. Most sites were categorized as site classes C and D based on the mean shear wave velocity to 30 m, Vs30 ranging between 250 and 650 m/s. Based on the acceleration response spectra determined from the site-specific analyses, the site coefficients specified in the Korean seismic design guide underestimate the ground motion in the short-period band and overestimate the ground motion in mid-period band. These differences can be explained by the differences in the bedrock depth and the soil stiffness profile between Korea and western US. The site coefficients were re-evaluated and the preliminary site classification system was introduced accounting for the local geologic conditions on the Korean peninsula.

  • PDF

Effect of Moisture Contents and Density of Paulownia tomentosa on Acoustical Properties (함수율과 밀도가 참오동나무재의 음향 특성에 미치는 영향)

  • Yoo, Tae-Kyung;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.61-66
    • /
    • 1997
  • Paulownia wood has been used as sound board for Korean traditional musical instruments such as Keomungo(Korean lute), Kayagum(twelve-stringed Korean harp) and Changgu(hour-glass shaped drum), etc. The acoustic properties of wood affected not only by dimensions but also by density and stiffness of wood. Due to inhomogeneity and hygroscopicity of wood. the acoustic properties of wood are inconsistent. To clarify the effect of moisture content and air dry density on acoustic properties, longitudinal vibration experiment was accomplished in 3 moisture content levels of 9.6, 11.1 and 12.5% and in 3 air dry density levels of 0.22, 0.25 and 0.28g/$cm^3$. The results were as follows: As the moisture content increased, the fundamental frequency. specific dynamic Young's modulus and sound velocity decreased, but the internal friction increased so that loss of energy increased. The values in damping of sound radiation were rapidly decreased at 12.5%. It meant that the damping of internal friction was larger than damping of sound radiation at high moisture content. As the air dry density increased, the fundamental frequency, specific dynamic Young's modulus and sound velocity increased, but the internal friction and damping of sound radiation decreased so that loss of energy decreased. And acoustic converting efficiency was hardly influenced by increasing air drying density.

  • PDF

Quality Characteristics of Sponge Cake by Black Soybean Powder of Different Ratios (검은콩 분말의 배합비를 달리한 스펀지 케이크의 제조 및 품질 특성)

  • Jeong, Hyun-Chul;Yoo, Seung-Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.6
    • /
    • pp.909-915
    • /
    • 2010
  • In order to determine the most effective ratio of black soybean powder as an ingredient in cake, black soybean power was added at ratio of 10, 20, 30, and 40% versus wheat flour set as 0(control). Black soybean powder consisted of moisture(8.44%), crude protein(31.34%), crude fat(6.64%), crude ash(3.88%) and carbohydrates(49.70%). The specific gravity, spreadability, and baking loss increased according to the amount of black soybean powder, although specific volume decreased. The chromaticity 'L' and 'b' values of sponge cake with black soybean powder showed an reducing trend while the 'a' value displayed an increasing trend with an increase in black soybean powder. The texture properties of sponge cake with added black soybean powder showed an increasing trend in hardness and stiffness when the cake contained more black soybean powder. The sensory test for sponge cake with added black soybean powder showed high preference for 20% added black soybean powder to sponge cake.

Material & Structural Characteristics of Composite Material Flexible Propeller (복합재료 유연 프로펠러의 재료 및 구조적 특성 연구)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Byun, Joon-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.203-217
    • /
    • 2009
  • The researches on the development of composite material propeller with outstanding damping effects have been actively attempted for the reduction of radiation noise of underwater vehicle propeller. Composite material suitable for the flexible propeller has the following advantages, such as high specific strength and specific stiffness, low thermal expansion coefficient, high resistance against environmental deterioration, low possibility of corrosion due to cavitation, nonoccurrence of rapid fracture due to fatigue, easy molding of complicated shape, easy repair maintenance and low production costs, etc. For the confirmation of optimal fiber array structures of composite material for the production of the flexible propeller blades, in this study, mechanical characteristics of its specimens according to materials were obtained and structural characteristics of propeller blade were also examined according to materials and stacking fiber arrays.

A Study on Fatigue Crack Behavior of Metal Matrix Composites for Automobile Engine (자동차엔진용 금속기 복합재료의 피로균열거동에 관한 연구)

  • 박원조;허선철;정재욱;이해우;부명환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.140-146
    • /
    • 2003
  • Metal matrix composites had generated a lot of interest in recent time because of their high specific strength and stiffness in specific properties. It was also highlighted as the material of frontier industry because strength, heat-resistance, corrosion-resistance and wear-resistance were superiored. In this study, the strength properties of $Al_{18}B_{4}O_{33}$/AC4CH composites were represented mixing the binder of $SiO_2$. It was also fabricated by squeeze casting. $Al_{18}B_{4}O_{33}$/AC4CH was fabricated at the melt temperature of $760^{\circ}C$, the perform temperature of $700^{\circ}C$ and mold temperature of $200^{\circ}C$ under the pressure of 83.4MPa. Consequently, fatigue life was observed roughly in the order of AC4CH> nobiner> $SiO_2$, independently on crack propagation direction and stress ratio.

Fabrication and Mechanical Properties of Carbon Nanotube Probe for Ultrasmall Force Measurement in Biological Application (생물학적 초미세력 검출을 위한 탄소나노튜브 프로브의 제작 및 기계적 특성 검출)

  • Kwon, Soon-Geun;Park, Hyo-Jun;Lee, Hyung-Woo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.140-147
    • /
    • 2008
  • In this study, a carbon nanotube probe (CNT probe) is proposed as a mechanical force transducer for the measurement of pico-Newton (pN) order force in biological applications. In order to measure nantube's displacement in the air or liquid environment, the fabrication of a CNT probe with tip-specific loading of fluorescent dyes is performed using tip- specific functionalization of the nanotube and chemical bonding between dyes and nanotube. Also, we experimentally investigated the mechanical properties of the CNT probe using electrostatic actuation and fluorescence microscope measurement. Using fluorescence measurement of the tip deflection according to the applied voltage, we optimized the bending stiffness of the CNT probe, therefore determined the spring constant of the CNT probe. The results show that the spring constant of CNT probes is as small as 1 pN/nm and CNT probes can be used to measure pN order force.

A study on forming characteristics of magnesium alloy (AZ31) on various temperatures (마스네슘 합금 판재 (AZ31)의 온도별 성형 특성 분석)

  • LEE, Han-Gyu;La, Won-Bin;Hong, So-Dam;LEE, Chang-Whan
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, in the surge of global environmental issues, there has been a great attention to lightweight materials in purpose of saving energy. Magnesium alloys not only have low specific gravity, and superb specific stiffness, but are also excellent in blocking vibrations and electromagnetic waves. So demand for this material is getting bigger rapidly throughout the industry. In this study, we examined the improvement of formability of magnesium alloy AZ31 material in warm working. Drawing, bending and shearing process were carried out by varying the forming temperature and the forming speed, and the influence of the variables on each process was studied. In the experiments, the high forming temperature and low forming speed results in high formability in the drawing process and the bending process. In the shearing process, as the forming temperature increases, the length of the fracture decreases.

Evaluation of Stiffness Profile for a Subgrade Cross-Section by the CAP(Common-Array-Profiling)-SASW Technique (CAP SASW 기법에 의한 지반단면의 전단강성구조 평가)

  • Joh Sung-Ho;Jang Dae-Woo;Kang Tae-Ho;Lee Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.71-81
    • /
    • 2005
  • Surface wave techniques were initially based on 2-D plane waves and were later improved to the techniques based the 3-D based cylindrical waves. However, body-wave interference, near-field effect and limited technology in surface wave measurements restricted the use of 3-D cylindrical waves to the 1-D evaluation of subgrade stiffness. In this study, by the numerical simulation of SASW measurements, the dispersion properties of surface waves including vertical, horizontal Rayleigh waves and Love waves were thoroughly investigated in the 3-D domain, and a new filter criteria to minimize the near-field effect was established, which led to CAP (common-array-profiling)-SASW technique. The CAP-SASW technique enabled the evaluation of subgrade stiffness fur a specific subgrade segment, not for a whole section of measurement array. Therefore, a contour plot of subgrade stiffness with a ground-truth quality can be obtained by the CAP-SASW technique. The procedure proposed in this study was verified by comparing the shear-wave velocity profiles with the shear-wave velocity profiles of downhole testing at two geotechnical sites.

Force-based seismic design of steel haunch retrofit for RC frames

  • Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.133-148
    • /
    • 2021
  • The paper presents a simplified force-based seismic design procedure for the preliminary design of steel haunch retrofitting for the seismic upgrade of deficient RC frames. The procedure involved constructing a site-specific seismic design spectrum for the site, which is transformed into seismic base shear coefficient demand, using an applicable response modification factor, that defines base shear force for seismic analysis of the structure. Recent experimental campaign; involving shake table testing of ten (10), and quasi-static cyclic testing of two (02), 1:3 reduced scale RC frame models, carried out for the seismic performance assessment of both deficient and retrofitted structures has provided the basis to calculate retrofit-specific response modification factor Rretrofitted. The haunch retrofitting technique enhanced the structural stiffness, strength, and ductility, hence, increased the structural response modification factor, which is mainly dependent on the applied retrofit scheme. An additional retrofit effectiveness factor (ΩR) is proposed for the deficient structure's response modification factor Rdeficient, representing the retrofit effectiveness (ΩR=Rretrofitted /Rdeficient), to calculate components' moment and shear demands for the retrofitted structure. The experimental campaign revealed that regardless of the deficient structures' characteristics, the ΩR factor remains fairly the unchanged, which is encouraging to generalize the design procedure. Haunch configuration is finalized that avoid brittle hinging of beam-column joints and ensure ductile beam yielding. Example case study for the seismic retrofit designs of RC frames are presented, which were validated through equivalent lateral load analysis using elastic model and response history analysis of finite-element based inelastic model, showing reasonable performance of the proposed design procedure. The proposed design has the advantage to provide a seismic zone-specific design solution, and also, to suggest if any additional measure is required to enhance the strength/deformability of beams and columns.

A Study on the Optimal Design of Ti-6Al-4V Lattice Structure Manufactured by Laser Powder Bed Fusion Process (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 격자 구조물의 최적 설계 기법 연구)

  • Ji-Yoon Kim;Jeongmin Woo;Yongho Sohn;Jeong Ho Kim;Kee-Ahn Lee
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.146-155
    • /
    • 2023
  • The Ti-6Al-4V lattice structure is widely used in the aerospace industry owing to its high specific strength, specific stiffness, and energy absorption. The quality, performance, and surface roughness of the additively manufactured parts are significantly dependent on various process parameters. Therefore, it is important to study process parameter optimization for relative density and surface roughness control. Here, the part density and surface roughness are examined according to the hatching space, laser power, and scan rotation during laser-powder bed fusion (LPBF), and the optimal process parameters for LPBF are investigated. It has high density and low surface roughness in the specific process parameter ranges of hatching space (0.06-0.12 mm), laser power (225-325 W), and scan rotation (15°). In addition, to investigate the compressive behavior of the lattice structure, a finite element analysis is performed based on the homogenization method. Finite element analysis using the homogenization method indicates that the number of elements decreases from 437,710 to 27 and the analysis time decreases from 3,360 to 9 s. In addition, to verify the reliability of this method, stress-strain data from the compression test and analysis are compared.