• Title/Summary/Keyword: Specific Fuel Consumption

Search Result 297, Processing Time 0.021 seconds

The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel (알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향)

  • Kim, Nam-Kyu;Kim, Byung-Chul;Jung, Byung-Hoon;Song, Sang-Woo;Nakata, K.;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.

A Reflection on the Consumer Culture in the Post-COVID 19 Era from the Lens of Christian Education: Learning from the Drama, Penthouse (포스트 코로나 시대의 소비문화에 대한 기독교교육의 성찰 : 드라마 「펜트하우스」를 중심으로)

  • Won, Shin-Ae
    • Journal of Christian Education in Korea
    • /
    • v.66
    • /
    • pp.113-145
    • /
    • 2021
  • As a contemporary exponent of Bauderillard's Simulation and Simulacra, this paper aims to reflect on the 'consumer culture' criticized by Baudrillard from the lens of Christian Education in reading the Drama, Penthouse related to the notions of the consumption-ideology, the desire and violence of image in the post-Covid 19 era. As Baudrillard begins to realize that the concept of simulation rooted from mass media in the modern society, he explains mass media as the emerging of Simulation or the process of Simulation will lead to the impulsion of reality, which ends up with vanishing the original reality. Baudrillard is explaining in his argument that the process of Simulation proceeds among various areas of the contemporary society being manipulated by mass media. While Simulation is the process of producing the hyperreality characterized by the excess of images that seems more real than the original reality, Simulation brought about Simulacra as excess reality or consequently exploding reality. Christian educators in the post-Covid 19 must know how to deal with critical theory by considering positive ways of avoiding questioning of how to articulate what the norm of universal consensus is in the specific situation. In other words, it should be noted that the nature of the ruling ideology and the ideology of consumption has been influenced or manipulated by mass media. Christian educators especially have to help young people in seeing the messages from the images of the screens, television, soap-opera, and commercial advertising making reality as Simulacre which is more real than the original reality. When the medium becomes the message, the power of medium makes the consumer not reach communication with it. This is the main reason in the controversy about the images on television drama, Penthouse and the impact of images on people's mind. As an exponent of McLuhan's belief that "the medium is the message", Baudrillard argues although the message and a subject of Simulacra(excessive reality) is unexpectedly disappearing, the medium itself is vanished through the silence of image. However, the task of Christian education has to fuel how we teach, learn, share and pass on the Word of God as the Message. Furthermore, it is worth noting that the Message of God cannot be vanished or burst with the impulsion of it, but exists forever. With Baudrillard's ideas of Simulation and Simulacra in mind, the work of Christian education as an observation platform can better engage the reflection on a consumer society of consumerism that makes Church community and a consumer irresistible against the Fake world.

Effect of the Cone Index on the Work Load of the Agricultural Tractor (원추 지수가 트랙터 작업 부하에 미치는 영향)

  • Kim, Wan Soo;Kim, Yong Joo;Baek, Seung Min;Baek, Seung Yun;Moon, Seok Pyo;Lee, Nam Gyu;Kim, Taek Jin;Siddique, Md Abu Ayub;Jeon, Hyeon Ho;Kim, Yeon Soo
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.9-18
    • /
    • 2020
  • The purpose of this study was to analyze the effect of the soil cone index (CI) on the tractor work load. A load measurement system was constructed for measuring the field data. The field sites were divided into grids (3×3 m), and the cone index was measured at the center of each grid. The work load measured through the plow tillage was matched with the soil cone index. The matched data were grouped at 600 kPa intervals based on the cone index. The work load according to the cone index was analyzed for engine, axle, and traction load, respectively. The results showed that when the cone index increased, engine torque decreased by up to 9%, and the engine rotational speed and brake-specific fuel consumption increased by up to 5% and 3%, respectively. As the cone index increased, the traction and tillage depth were inversely proportional to the cone index, decreasing 7% and 18%, respectively and the traction and tillage depth were directly proportional to the cone index, increasing 13% and 12%, respectively. Thus, it was found that the cone index had a major influence on the engine, axle, and traction loads of the tractor.

Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR (저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교)

  • Lim, Gi-Hun;Park, Jun-Hyuk;Choi, Young;Lee, Sun-Youp;Kim, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Exhaust gas recirculation (EGR) is more effective than selective catalytic reduction (SCR) or lean $NO_x$ trap (LNT) for the reduction of $NO_x$ emissions in diesel engines. A large amount of EGR gas is necessary to satisfy the stringent regulations on $NO_x$ emissions. Low pressure loop (LPL) EGR is almost independent of the variable geometry turbocharger (VGT) at a specific boost pressure, so LPL EGR is better than conventional high pressure loop (HPL) EGR in terms of EGR supply. We compare the influence of HPL EGR and LPL EGR on the combustion characteristics at a constant boost pressure in a diesel engine. The dilution ratio was employed as an independent parameter to analyze the effect of the dilution of the intake charge for each EGR loop. At the same level of $NO_x$ emissions, the fuel consumption and smoke opacity were slightly lower for LPL EGR than for HPL EGR.

Optimum design of propulsion shafting system considering characteristics of a viscous damper applied with high-viscosity silicon oil (고점도 실리콘오일 적용 점성댐퍼 동특성을 고려한 추진축계 최적 설계)

  • Kim, Yang-Gon;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.202-208
    • /
    • 2017
  • The recently developed marine engines for propulsion of ships have higher torsional exciting force than previous engines to improve the propulsion efficiency and to reduce specific fuel oil consumption. As a result, a viscous damper or viscous-spring damper is installed in front of marine engine to control the torsional vibration. In the case of viscous damper, it is supposed that there is no elastic connection in the silicon oil, which is filled between the damper housing and inertia ring. However, In reality, the silicon oil with high viscosity possesses torsional stiffness and has non-linear dynamic characteristics according to the operating temperature and frequency of the viscous damper. In this study, the damping characteristics of a viscous damper used to control the torsional vibration of the shafting system have been reviewed and the characteristics of torsional vibration of the shafting system equipped with a corresponding viscous damper have been examined. In addition, it is examined how to interpret the theoretically optimal dynamic characteristics of a viscous damper for this purpose, and the optimum design for the propulsion shafting system has been suggested considering the operating temperature and aging. when the torsional vibration of the shafting system is controlled by a viscous damper filled with highly viscous silicon oil.

Study of Small Craft Resistance under Different Loading Conditions using Model Test and Numerical Simulations (모형시험과 수치해석을 이용한 하중조건 변화에 따른 소형선박의 저항성능 변화에 관한 연구)

  • Jun-Taek, Lim;Michael;Nam-Kyun, Im;Kwang-Cheol, Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.672-680
    • /
    • 2023
  • Weight is a critical factor in the ship design process given that it has a substantial impact on the hydrodynamic performance of ships. Typically, ships are optimally designed for specific conditions with a fixed draft and displacement. However, in reality, weight and draft can vary within a certain range owing to operational activities, such as fuel consumption, ballast adjustments, and loading conditions . Therefore, we investigated how resistance changes under three different loading conditions, namely overload, design-load, and lightship, for small craft, using both model experiments and numerical simulations. Additionally, we examined the sensitivity of weight changes to resistance to enhance the performance of ships, ultimately reducing power requirements in support of the International Maritime Organization's (IMO) goal of reducing CO2 emissions by 50% by 2050. We found that weight changes have a more significant impact at low Froude Numbers. Operating under overload conditions, which correspond to a 5% increase in draft and an 11.1% increase in displacement, can lead to a relatively substantial increase in total resistance, up to 15.97% and 14.31% in towing tests and CFD simulations, respectively.

Effect of Cooling Water Capacity on the Engine Performance for Small Diesel Engine (냉각수(冷却水) 용량(容量)이 소형(小型) 디젤기관(機關)의 성능(性能)에 미치는 영향(影響))

  • Myung, Byung Soo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.265-278
    • /
    • 1986
  • This study was attempted to improve the thermal efficiency of 6 kW water-cooled diesel engine on power tiller. The engine performance tests were conducted to find out the effect of cooling water capacity of 2700cc, 2800cc, 2900cc, 3000cc, 3100cc on power, brake specific fuel consumption (BSFC), torque, temperature of cooling water and lubricating oil and friction losses of the engine with D. C. dynamometer. The results obtained in the study are summarized as follows: 1. The performance of the engine tested was adequated to Korea Industrial Standard but actual economy power was 10% higher than the labeled rated power of the engine. The BSFC of the engine tested 297.8g/kW-h which is belong a little higher level than hreign products. The temperature of cooling water was $101^{\circ}C$ which is higher than SAE standard ($88^{\circ}C$) 2. The friction losses of engine tested was 3.656 kW at 2200 rpm of rated rpm (piston speed 6.97m/sec) and is higher than those of foreign products. 3. When the cooling water capacity was increased from 2700cc to 3100cc the power output of the engine was increased from 6.7 kW to 7.13 kW at the rate of 6.4% and also the torque of the engine was increased from 28.85 N.m to 30.76 N.m at the rate of 6.39%. 4. When the cooling water capacity was increased from 2700cc to 3100cc, the BSFC was decreased 6.9g/kW-h from 310.9g/kW-h to 304.1g/kW-h, and after one half hour operation with full load, the temperature of cooling water was decreased $13^{\circ}C$ from $101^{\circ}C$ to $88^{\circ}C$ and also the temperature of lubricant oil was decreased $6.4^{\circ}C$ from $76.7^{\circ}C$ to $70.4^{\circ}C$. 5. The mechanical efficiency was increased from 70.08% to 71.08% when the cooling water capacity was increased from 2700cc to 3100cc.

  • PDF