• Title/Summary/Keyword: Specific Energy Density

Search Result 346, Processing Time 0.024 seconds

Energy Storage Characteristics In Fixed Beds (Charging, Storing, Discharging)

  • Hassanein, Soubhi A.;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.17-23
    • /
    • 2004
  • In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during (charging ,storing, discharging) mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also efficiency of energy stored inside the bed is computed. Finally using refined model the effect of air flow rate per unit area Ga (0.2, 0.3, and 0.4 kg/$m^2$-s), and inlet air temperature (200, 250, 300 $^{\circ}C$) on energy storage characteristics was studied in three mode ( charging ,storing, discharging). The rock particles of diameter 1 em is used as bed material in this research.

  • PDF

Energy Storage Characteristics in Fixed Beds;Part 1. Charging Mode

  • Hassanein, Soubhi A.;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.158-164
    • /
    • 2004
  • In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during charging mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also energy stored inside the bed is computed. A comparison between refined model and non refined model is done. Finally using refined model the effect of bed material (Glass, Fine clay ,and aluminum ), and air flow rate per unit area Ga (0.3, 0.4, and 0.5 kg/$m^2$-s) on energy storage characteristics was studied.

  • PDF

Measurement of Mechanical Material Properties of Rubber Compounds Sampled from a Pneumatic Tire (타이어에서 채취한 고무배합물의 기계적 물성 측정)

  • 김용우;김종국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.404-409
    • /
    • 2002
  • Pneumatic tires usually contain a variety of rubber compositions, each designed to contribute some particular factor to overall performance. Rubber compounds designed for a specific function will usually be similar but not identical In composition and properties. Since 1970`s finite element analysis of tire has been performed extensively, which requires some energy density functions of rubber components of a tire. The conventional Mooney-Rivlin material model is one of the description that is commonly used in the analysis of tire. In this paper, we report the two material constants of gooney-Rivlin material model for some rubber compounds of a real pneumatic tire, which are obtained through uniaxial tension test.

  • PDF

Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries

  • Oh, Seung-Min;Sun, Yang-Kook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.172-177
    • /
    • 2012
  • Mo-doped $LiFePO_4$ was synthesized via co-precipitation method using sucrose as the carbon source. Structure, surface morphology, and the electrochemical properties of the synthesized olivine compounds were investigated using Rietveld refinement of X-ray diffraction data (XRD), scanning electron microscopy (SEM), and electrochemical charge-ischarge tests. Spherical morphology with the particle size of ${\sim}8{\mu}m$ authenticated the enhanced tap density and volumetric energy density of the synthesized materials. Charge-discharge behavior of $LiFePO_4$ and Mo-doped $LiFePO_4$ cells demonstrated a specific capacity of 130 and 145 mAh $g^{-1}$, respectively. Mo-doped $LiFePO_4$ cells exhibited an excellent discharge capacity at 96 mAh $g^{-1}$ at 7 C-rate.

Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming (바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구)

  • Byungjin Lee;Subeen Wi;Dongkyu Lee;Sangyeon Hwang;Hyoungwoon Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.404-411
    • /
    • 2023
  • For the direct reforming of biogas, a three-phase gliding arc plasma reformer was designed to expand the plasma discharge region, and the operation conditions of the plasma reformer, such as the S/C ratio, the gas flow rate, and the plasma input power, were optimized. The H2 production efficiency is increased at a lower specific plasma input energy density, but byproducts such as CXHY and carbon soot are generated along with the increase in H2 production efficiency. The formation of byproducts is decreased at higher specific plasma input energy densities and S/C ratios. The optimized operation conditions are 5.5 ~ 6.0 kJ/L for the specific plasma input energy density and 3 for the S/C ratio, considering the conversion efficiency, H2 production, and byproduct formation. It is expected that the H2 production efficiency will improve with the decrease in fuel consumption in biogas burners because the heat generated from plasma discharge heats up the feed gas to over 500 ℃.

Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries (리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성)

  • Kong, Ming Zhe;Nguyen, Van Hiep;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.298-302
    • /
    • 2016
  • In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.

The Yield and Wood Quality of 1-year-old Hybrid Poplars : Populas alba X P. glandulosa $F_1$ and Populus nigra var. italica X P. maximowiczii $F_1$ Clones (1년생 현사시 및 양황철의 물질생산 및 재질특성)

  • Noh Eui-rae;Kim Young-mo;Jhun Kae-sang;Shim Sang-Yong
    • Journal of Korea Foresty Energy
    • /
    • v.1 no.2
    • /
    • pp.1-19
    • /
    • 1981
  • In order to investigate biomass yield of one-year-old hyblrid poplars, Pripulusalba x P. glandulosa $F_1$ and Populus nigra var. italica x P. maximowiczii $F_1$clones, as energy and fiber resources, dry matter yield, leaf area, leaf area index, dry matter production ability, specific gravity and fiber length and width were measured. Dry matter yield was 1.89 ton/ha for Poplus alba x P. glandulosa $F_1$ and 3.63 ton/ha for Populus nigra via.italica x P. merximowiczii $F_1$ clones in the planting density of 20,000 trees/ha and in the planting density of 40,000 trees/ha was 3.87 ton/ha for Populus alba x P. glandulosa $F_1$and 5.64 ton/ha for Populus nigra var. italica x P. maximowiczii $F_1$ clones. Leaf area index was 1.24mtim2 in the planting density of 20,000 trees/ha and 2.45 m31m3 in the density of 40,000 trees/ha for Populus alba x P. glandulosa $F_1$ clones and it was 1.96 m21m2 in the planting density of 20,000 trees/ha and 3.36 m21m2 in the density of 40,000 trees/ha for the hybrid $F_1$ Populus nigra var. italica x P. maximowiczii clones. The average specific gravity of the hybrid poplars was 0..36 when bark and pith were included and 0.31 when bark and pith were removed in the plot of 20,000 trees/ha and in the 40,000 trees/ha plot showed 0.35 and 0.31 respectively, for Populus alba x P. glandulosa $F_1$clones. It was 0.36 when bark and pith were included and 0.32 when bark and pith were removed in the 20,000 trees/ha plot and in the 40,000 trees/ha plot was 0.34 and 0.31 respectively for Populus nigra var. italica x P. maximowiczii $F_1$clones. The average fiber length was 0.57 mm in the 20,000 trees/ha plot and 0.58 mm in the 40,000 trees/ha plot for Poplus alba x P. glandulosa $F_1$clones and was 0.60 in both plots of 20,000 trees/ha and 40,000 trees/ha for Populus nigra var. italica x P. maximowiczii $F_1$ clones. There is a big clonal variation among those clones studied, showing high selection potential in both species.

  • PDF

Fire Identification based on Physical Properties of Bean Oil (대두유의 물리적 특성에 따른 화재감식)

  • Jin, Bog-Kwon;Jung, Soo-Il
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.246-251
    • /
    • 2008
  • Oil Fire easily generates fire in the pressure of the atmosphere and below the normal temperature. Because these discharge flammable gas and ignite within the combustibles limit in conditioning to be assisted air and an invariable density. But Kitchen Fire shows very specific properties of matter and energy Qualification in most cases even though the same oil fires occured. In this Paper, around these specific character that Kitchen Fire have Properties of matter or energy Qualification studied on the genetic mechanism and counter measure scheme.

Fabrication of Graphene Supercapacitors for Flexible Energy Storage

  • Habashi, M. Namdar;Asl, Shahab Khameneh
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.248-254
    • /
    • 2017
  • In the present work, graphene powder was synthesized by laser scribing method. The resultant flexible light-scribed graphene is very appropriate for use in micro-supercapacitors. The effect of the laser scribing process in reducing graphene oxide (GO) was investigated. GO was synthesized using a chemical mixture of GO solution; then, it was coated onto a LightScribe DVD disk and laser scribed to reduce GO and create laser-scribed graphene (LSG). The CV curves of pristine rGO at various scan rates showed that the ultimate product possesses the ability to store energy at the supercapacitor level. Charge-discharge curves of pristine rGO at two different current densities indicated that the specific capacitance ($C_m$) increases due to the reduction of the discharge current density. Finally, the long-term charge-discharge stability of the LSG was plotted and indicates that the specific capacitance decreases very slightly from its primary capacitance of ${\sim}10F\;cm^{-3}$ and that the cyclic stability is favorable over 1000 cycles.

Ceramic Application for Regenerative Burner System (세라믹스의 축열연소시스템 응용)

  • 한동빈;박병학;김영우;배원수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.497-503
    • /
    • 1999
  • Recently regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system the regenrative one has the several merits such as higher fuel efficiency light weigh of apparatus low harmful toxic gas and homogeneous heating zone etc. The regenerative material a very important component of the new regenerative burner system should possess the properties of low specific density higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study alumina ball alumina tube 3-D ceramic foam and hoeycomb as regenerative materials were tested and evaluated. The computer silumation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature.

  • PDF