• Title/Summary/Keyword: Specific Cutting Energy

Search Result 70, Processing Time 0.045 seconds

Chip breaking characteristics using non-dimensional parameter in metal cutting (절삭 가공시 무차원 파라미터에 의한 칩 절단특성)

  • Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.181-186
    • /
    • 1999
  • For an unmanned machining system, the control and disposal of chips is one of the most serious problems at present. In order to perform chip control, feed/land length($F_L$) was introduced, and using this parameter, the cutting performance and chip breaking characteristics of groove-type and the land -angle-type chip formers were assessed. The specific cutting energy consumed and the shape of broken chips with its breaking cycle time were evaluated to find out the ranges of $F_L$ value where efficient cutting and effective chip breaking could be achieved. The C type chip was found to be the most preferable from the view point of cutting efficiency.

  • PDF

Characteristic of size distribution of rock chip produced by rock cutting with a pick cutter

  • Jeong, Hoyoung;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.811-822
    • /
    • 2018
  • Chip size distribution can be used to evaluate the cutting efficiency and to characterize the cutting behavior of rock during cutting and fragmentation process. In this study, a series of linear cutting tests was performed to investigate the effect of cutting conditions (specifically cut spacing and penetration depth) on the production and size distribution of rock chips. Linyi sandstone from China was used in the linear cutting tests. After each run of linear cutting machine test, the rock chips were collected and their size distribution was analyzed using a sieving test and image processing. Image processing can rapidly and cost-effectively provide useful information of size distribution. Rosin-Rammer distribution pamameters, the coarseness index and the coefficients of uniformity and curvature were determined by image processing for different cutting conditions. The size of the rock chips was greatest at the optimum cut spacing, and the size distribution parameters were highly correlated with cutter forces and specific energy.

Tool Material Dependence of Hard Turning on The Surface Quality

  • Park, Young-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This paper presents an experimental study of the effect of cutting tool materials on surface quality when turning hardened steels. Machining tests on a lathe are performed using polycrystalline cubic boron nitride (PCBN) and ceramic tools at various cutting conditions without coolant. From the experiments, it is observed that the radial force is the largest force component regardless the type of tool used. The specific cutting energy for the hard turning is estimated to be considerably smaller than the specific grinding energy. It is also found that cutting force and surface roughness with the PCBN tools are higher and better than those with the ceramic tools under the same cutting condition. It is due that the PCBN tools transfer the generated heat more effectively than the ceramic tools due to their higher thermal conductivity. The optimal cutting conditions for the best surface quality are selected by using an orthogonal array concept.

Linear cutting machine test for assessment of the cutting performance of a pick cutter in sedimentary rocks (퇴적층 암석의 픽 커터 절삭성능 평가를 위한 선형절삭시험)

  • Jeong, Hoyoung;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.161-182
    • /
    • 2018
  • We carried out a series of linear cutting machine tests to assess the cutting performance of a pick cutter in sedimentary rock. The specimens were Linyi sandstone from China and Concrete (rock-like material, conglomerate). Using the small scaled LCM system, we estimated the cutter force and specific energy under different cutting conditions. The cutter forces (cutting and normal) increased with penetration depth and cutter spacing in two rock types, and it was affected by the strength of specimens. On the other hand, the ratio of the peak cutter force to the mean cutter force was influenced by cutting characteristic and composition of rock rather than rock strength. The cutting coefficient was affected by the friction characteristic between rock and pick cutter rather than the cutting conditions. Therefore, the optimal cutting angle can be determined by considering of cutting coefficient and resultant force of pick cutter. The optimum cutting condition was determined from the relationship between the specific energy and cutting condition. For two specimens, the optimum s/p ratio was found to be two to four, and the specific energy decreased with the penetration depth. The result from this study can be used as background database to understand the cutting mechanism of a pick cutter, also it can be used to design for the mechanical excavator.

Assessment of rock cutting efficiency of an actuated undercutting disc (구동형 언더커팅 디스크의 절삭효율 평가)

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2021
  • Alternative methods of rock cutting have been introduced to substitute and to improve the traditional mechanical rock excavation methods (e.g., TBM and roadheader). Undercutting methods have been recently studied in some countries. In undercutting, several additional cutting parameters are involved in its cutting process compared to the traditional rock-cutting. As a fundamental study, this paper introduces the concept of undercutting method with actuated disc, lab-scaled testing system, and testing procedures of undercutting by the system. Also, we present the calculation methods of cutter forces and specific energy, and discuss the results of undercutting tests compared to those of traditional rock-cutting methods.

Cutting Characteristics Depending on Coolant Level in Turning Process (절삭유 레벨에 따른 선삭가공 절삭특성)

  • 양승한;이영문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.80-86
    • /
    • 2004
  • With the increasing demand of environmentally clean machining in recent years, the use of coolants has been restricted extensively. In this paper, a multiple comparison method(Tukey's HSD method) is proposed to choose the optimum level of coolant necessary for an efficient and environmentally clean machining. The cutting temperature, specific cutting energy, and surface roughness in turning process are analysed by ANOVA(Analysis Of Variance) and Tukey's HSD method. From the experimental results and statistical analysis, it is found that the optimum condition of coolant level is 10 ml/min with 6% mix ratio, which is almost half of the commonly used level.

Contribution Assessment of Roadheader Performance Indexes by Analysis of Variance (분산분석을 이용한 로드헤더 절삭시험 입출력 인자 간의 기여도 조사)

  • Mun-Gyu, Kim;Chang-Heon, Song;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.386-396
    • /
    • 2022
  • To analyze the influence of variables of roadheaders, the linear cutting testing data of pick cutter were collected from the former literatures. The input factors were set up as uniaxial compressive strength, cutting depth, cutting spacing, attack angle, skew angle, and output factors were determined as specific energy, average cutting force, maximum cutting force, average vertical force, and maximum vertical force. After composing a table of the design of experiment (DOE). The contribution level of each factor was calculated by analysis of variance (ANOVA). As a result, the factors having greatest influence on cutting force and specific energy were uniaxial compressive strength and cutting spacing.

Evaluation of Cutting Characteristics Using Multiple Regression Analysis (다중회귀분석을 이용한 절삭특성 평가)

  • Lee Young Moon;Jang Seung Il;Jun Jeong Woon;Bae Hyun Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.20-25
    • /
    • 2004
  • Using the multiple regression analysis cutting forces of turning processes have been predicted based on the cutting conditions such as feed rate(f), depth of cut(d), and cutting velocity(v). The statistical inference of the equation was checked by ANOVA test. The validity of the proposed regression analysis was verified by two sets of cutting tests of 27 cutting conditions and the additional cutting tests of 18 cutting conditions. From the results of analytical and experimental studies, it was found that there was no significant difference between the measured and predicted cutting forces. Also, the shear and friction characteristics of turning processes were analyzed with predicted cutting forces.

Experimental verification of shear and frictional characteristics in end milling (엔드밀링시 전단 및 마찰 특성의 실험적 검증)

  • Lee, Y. M.;S. H. Yang;M. Chen;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1789-1794
    • /
    • 2003
  • As a new approach to analyze shear behaviors in the shear plane and chip-tool friction behaviors in the chip-tool contact region during an end milling process, this paper introduces a method to transform an end milling process to an equivalent oblique cutting process. In this approach, varying undeformed chip thicknesses and cutting forces in the up-and down-end milling process are replaced with the equivalent ones of oblique cutting. Accordingly, in the current paper, the shear and friction characteristics of end milling operations, up- and down-end milling, have been analyzed based on the equivalent oblique cutting models. Two series of cutting tests, up- and down-end milling tests and the equivalent oblique cutting tests to that, have been carried out to verify the validity of the analyses. And using the results of cutting tests the cutting characteristics of the up- and down-end milling processes have been thoroughly investigated.

  • PDF