• Title/Summary/Keyword: Specific Absorption (SAR)

Search Result 106, Processing Time 0.023 seconds

Design of Radiation Pattern Reconfigurable Antenna for Vital Signal Sensing Device Attached on Wristband and SAR Analysis on Human body (팔목 부착형 생체신호 측정기기에 사용가능한 방사패턴 재구성 안테나 설계 및 인체 SAR 영향 분석)

  • Lee, Chang Min;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.666-670
    • /
    • 2015
  • This paper presents radiation pattern reconfigurable antenna for Fitbit Flex wristband which detects vital signal. Also, the paper presents Specific Absorption Rate (SAR) from the loop-dipole radiation pattern reconfigurable antenna based on the position of human body. The proposed loop-dipole radiation pattern reconfigurable antenna produces two opposite side direction radiation pattern using two RF switches. The resonant frequency of the radiation pattern reconfigurable antenna is Bluetooth communication bandwidth (2.4 - 2.485 GHz) and the maximum gain of the proposed antenna is 1.96 dBi. The proposed antenna satisfied the standard SAR value of 1.6 W/kg in 1 g tissue of the human body when the Bluetooth communication input average power of 0.04 W is excited to five parts of human body (head, chest, stomach, back, wrist). The maximum SAR value of in this simulation is presented in the part of head.

The Statistical Technique for Dosimetric Meta-Analysis at in-vivo and in-vitro Papers about Bioeffects of RF Electromagnetic Field (RF 전자기장 생체 영향 연구 문헌에서 노출량 메타분석을 위한 통계적 기법)

  • Choi, Sung-Ho;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1311-1320
    • /
    • 2003
  • This paper proposed the estimating method of electromagnetic dosimetric reliability at in-vivo and in-vitro experiments. For more accurate consequences of these researches, we have tried to find out any correlations among output power, power density and specific absorption rate(SAR) with the results of in-vivo, in-vitro tests and SAR reports of cellular phone and PDA. In the case of in-vivo tests, the power density has close statistical correlations with SAR value and in the event of in-vitro tests, the output power has considerable statistical correlations with SAR containing duty factor. We analysed the coefficient of determination to estimate the dosimeoic uncertainty. If we use this method before evaluating techniques of measurement and analysis at both in-vivo and in-vitro experiments, we will conduct more accurate reliability test.

Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes

  • Ali, Usman;Ullah, Sadiq;Khan, Jalal;Shafi, Muhammad;Kamal, Babar;Basir, Abdul;Flint, James A;Seager, Rob D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.317-328
    • /
    • 2017
  • This paper presents design and specific absorption rate analysis of a 2.4 GHz wearable patch antenna on a conventional and electromagnetic bandgap (EBG) ground planes, under normal and bent conditions. Wearable materials are used in the design of the antenna and EBG surfaces. A woven fabric (Zelt) is used as a conductive material and a 3 mm thicker Wash Cotton is used as a substrate. The dielectric constant and tangent loss of the substrate are 1.51 and 0.02 respectively. The volume of the proposed antenna is $113{\times}96.4{\times}3mm^3$. The metamaterial surface is used as a high impedance surface which shields the body from the hazards of electromagnetic radiations to reduce the Specific Absorption Rate (SAR). For on-body analysis a three layer model (containing skin, fats and muscles) of human arm is used. Antenna employing the EBG ground plane gives safe value of SAR (i.e. 1.77W/kg<2W/kg), when worn on human arm. This value is obtained using the safe limit of 2 W/kg, averaged over 10g of tissue, specified by the International Commission of Non Ionization Radiation Protection (ICNIRP). The SAR is reduced by 83.82 % as compare to the conventional antenna (8.16 W/kg>2W/kg). The efficiency of the EBG based antenna is improved from 52 to 74 %, relative to the conventional counterpart. The proposed antenna can be used in wearable electronics and smart clothing.

Numerical Implementation of Representative Mobile Phone Models for Epidemiological Studies

  • Lee, Ae-Kyoung;Yoon, Yonghyun;Lee, Sooyung;Lee, Byungje;Hong, Seon-Eui;Choi, Hyung-Do;Cardis, Elisabeth
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.87-99
    • /
    • 2016
  • This paper describes an implementation method and the results of numerical mobile phone models representing real phone models that have been released on the Korean market since 2002. The aim is to estimate the electromagnetic absorption in the human brain for case-control studies to investigate health risks related to mobile phone use. Specific absorption rate (SAR) compliance test reports about commercial phone models were collected and classified in terms of elements such as the external body shape, the antenna, and the frequency band. The design criteria of a numerical phone model representing each type of phone group are as follows. The outer dimensions of the phone body are equal to the average dimensions of all commercial models with the same shape. The distance and direction of the maximum SAR from the earpiece and the area above -3 dB of the maximum SAR are fitted to achieve the average obtained by measuring the SAR distributions of the corresponding commercial models in a flat phantom. Spatial peak 1-g SAR values in the cheek and tilt positions against the specific anthropomorphic mannequin phantom agree with average data on all of the same type of commercial models. Second criterion was applied to only a few types of models because not many commercial models were available. The results show that, with the exception of one model, the implemented numerical phone models meet criteria within 30%.

Method of SAR reduction for Wireless Transceiver (무선통신 단말기의 SAR 저감법)

  • Hwang, Jae-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.346-349
    • /
    • 2005
  • In this paper, we propose SAR(Specific absorption rate) reduction methods based on surface electric field distribution relation. Proposed the new method that is able to consider improvement of the SAR from the very beginning step of developing the wireless transceiver. Analysis of wireless handset with human body(head) using finite element method(FEM). Results of this method, SAR reduced about 50 %.

  • PDF

Development and Validation of Reverberation Chamber Type Whole Body Exposure System fer Mobile Phone Frequency (이동전화 주파수에 대한 전자파 잔향실 형태의 전신 노출장치 개발 및 유효성 평가)

  • 정기범;고경배;도현정;백정기;정연춘;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.291-300
    • /
    • 2004
  • Due to the rapid growth of mobile communication services, many studies have been performed on the biological effects of EMF(Electromagnetic field) exposure. However, it is not easy to create the field uniformity in radio frequency. To overcome this difficulty, the electric field and SAR(Specific Absorption Rate) distribution is developed to measure the whole body exposure system. In this paper, we developed the whole body exposure system for in-vivo study utilizing reverberation chamber which has a high possibility of practical use by substituting previous the EMC chamber. The field uniformity in the test area of the designed reverberation chamber was satisfied by the simulation and measurement data. In animal study of the whole body exposure for a mouse, the results of FDTD simulation were compared with those of measurement to confirm SAR under the electromagnetic exposure. We analyze the electric field distribution in the interior of the reverberation chamber and treat these results in statistical manner. In the CDMA frequency band(PCS & Cellular band), an average value of the whole body SAR and local peak value for a experimental mouse were presented for various input power.

A Metamaterial-Based Handset Antenna with the SAR Reduction

  • Kahng, Sungtek;Kahng, Kyungseok;Yang, Inkyu;Park, Taejoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.622-627
    • /
    • 2014
  • A method to reduce the specific absorption rate(SAR) of the antenna for WiMAX mobile communication is proposed in this paper. The SAR reduction is achieved by miniaturizing the physical size of the antenna for the given resonance frequency by devising a metamaterial-composite right- and left-handed(CRLH) configuration-based radiator much smaller than the quarter-guided wavelength adopted a lot in the conventional planar inverted F antenna(PIFA) or modified monopole antenna. The proposed antenna is placed near the head-phantom and its SAR is evaluated by the full-wave simulations(SEMCAD X), where the metamaterial-inspired antenna is shown to have the lower value than a modified monopole as the reference in terms of the SAR.

Electromagnetic Compatibility Study of a Medical Lead for MRI Systems (자기공명영상시스템에서의 의료용 리드선의 전자기적 호환 연구)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2019-2022
    • /
    • 2016
  • In the presence of an electrically conducting medical lead, radio frequency (RF) coils in magnetic resonance imaging (MRI) systems may concentrate the RF energy and cause tissue heating near the lead. A novel design for a medical lead to reduce this heating by introducing pins in the lead is presented. Peak 10 g specific absorption rate (SAR) in heart tissue, an indicator of heating, was calculated and compared for both conventional (Medtronic) lead design and our proposed design. Remcom XFdtd software was used to calculate the peak SAR distribution in a realistic model of the human body. The model contained a medical lead that was exposed to RF magnetic fields at 64 MHz (1.5 T), 128 MHz (3 T) and 300 MHz (7 T) using a model of an MR birdcage body coil. The proposed design of adding pins to the medical lead can significantly reduce the heating from different MRI systems.

Human Head Size and SAR Characteristics for Handset Exposure

  • Lee, Ae-Kyoung;Choi, Hyung-Do;Lee, Hyung-Soo;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.176-179
    • /
    • 2002
  • Using scaled models for an anatomical head model and a simple head model, we investigated the effects of head size on specific absorption rate characteristics for two mobile phones operating at 835 MHz and 1765 MHz. Our results showed that a larger head produced a higher localized SAR at 835 MHz. However, at 1765 MHz, the differences among the head models were insignificant since the superficial absorption was dominant over the effects of head shape and size. A larger head produced a lower whole-head averaged SAR at both frequencies.

  • PDF

Automatic RF Input Power Level Control Methodology for SAR Measurement Validation

  • Kim, Ki-Hwea;Choi, Dong-Geun;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.181-184
    • /
    • 2015
  • Evaluation of radiating radiofrequency fields from hand-held and body-mounted wireless communication devices to human bodies are conducted by measuring the specific absorption rate (SAR). The uncertainty of system validation and probe calibration in SAR measurement depend on the variation of RF power used for the validation and calibration. RF input power for system validation or probe calibration is controlled manually during the test process of the existing systems in the laboratories. Consequently, a long time is required to reach the stable power needed for testing that will cause less uncertainty. The standard uncertainty due to this power drift is typically 2.89%, which can be obtained by applying IEC 62209 in a normal operating condition. The principle of the Automatic Input Power Level Control System (AIPLC), which controls the equipment by a program that maintains a stable input power level, is suggested in this paper. The power drift is reduced to less than ${\pm}1.16dB$ by AIPLC, which reduces the standard uncertainty of power drift to 0.67%.