• Title/Summary/Keyword: Specific Energy Consumption

Search Result 375, Processing Time 0.021 seconds

A Study on the pattern of energy consumption of apartment in winter with Automatic Meter Reading Systems (원격검침시스템을 활용한 공동주택의 동절기 에너지 소비패턴 분석)

  • Shin, Juho;Kim, Hongseok;Lee, Donghwan;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1225-1234
    • /
    • 2013
  • According to the importance of greenhouse gas emissions, it grows day by day, the goverment is promoting to prepare the specific policy implementation to enhance building energy-saving design standars as the development agenda. In this study, the statistical analysis was performed by Descriptive statistics, Regression analysis, and Hypothesis testing to collect to generate and storage energy usage data in real time to settle parameter setting to affect energy consumption under energy-guzzling apartment not single building. This study is expected to be utilized as the basis for the optimum energy-saving design of the future of the building or facility energy costs rise and the demand for energy-efficient and stable management.

Experimental research on dynamic response of red sandstone soil under impact loads

  • Wang, Tong;Song, Zhanping;Yang, Jianyong;Wang, Junbao;Zhang, Xuegang
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • The cycling impact test of red sandstone soil under different axial pressure and different impact loads are conducted to reveal the mechanical properties and energy consumption mechanism of red sandstone soil with static-dynamic coupling loading. The results show that: Under the action of different axial pressure and different impact loads, the peak stress of the specimen increases, and then tends to be stable with the times of impact. With the increase of impact times, the specific energy absorption value of the red sandstone soil specimen is increased first and then gentle development trend. When the impact loads are certain, the larger the axial pressure is, the smaller the peak value of energy absorption, which indicates that the energy utilization rate is not high under the condition of large axial pressure. Through the analysis of energy utilization, it is found that the smaller the impact load, the higher the energy utilization rate. The greater the axial pressure, the lower the energy utilization rate. when the axial pressure is large, the impact loads corresponding to the maximum values of reflectivity, transmissivity and absorptivity are the same. The relationship between reflectivity and transmissivity is negatively correlated.

Experimental Study on Hydrogen Direct Reduction of Hematite in a Lab Scale Fluidized Bed Reactor by Estimating the Gas Consumption Rate

  • Hasolli, Naim;Jeon, Seong Min;Park, Young Ok;Kim, Yong Ha
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.96-101
    • /
    • 2015
  • Hematite reduction using hydrogen was conducted and the various process parameters were closely observed. A lab scale fluidized bed unit was designed especially for this study. The optimal values of the gas velocity, reduction time and temperature were evaluated. The values which indicated the highest reduction rate were set as fixed parameters for the following tests starting with the reduction time of 30 minutes and 750 ℃ of temperature. Among these variables the one with the highest interest was the gas specific consumption. It will tell the amount of the gas which is required to achieve a reduction rate of over 90% at the optimal conditions. This parameter is important for the scale up of the lab scale unit. 1,500 Nm3/ton-ore was found to be the optimal specific gas consumption rate at which the reduction rates exhibit the highest values for hematite.

Analysis of seawater desalination energy consumption based on changes in raw water characteristics and operating condition (원수 특성 변화 및 공정운영 조건에 따른 해수담수화 에너지 소비량 분석)

  • Yun, Seung-Hyeon;Woo, Dal-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.281-289
    • /
    • 2019
  • Desalination plants are generally studied with higher operating costs compared to water supply facilities. This study was conducted to reduce the cost of water production and to preserve existing water resources. Therefore, the purpose of this study was to utilize the control valves to increase maximum efficiency, thereby reducing the power of the pumps and operating costs. Specific energy consumption was shown to reduce the process operating power by up to 1.7 times from 6.17 to $3.55kWh/m^3$ based on seawater reverse osmosis 60 bar. In addition, the water intake process was divided into pre, inter, and post-according to the use method of blasting, and the water treatment process was divided into pre, inter, and post blending. In order to reduce power consumption, the blending process was combined to operate the facility, which resulted in the reduction of power consumption in the order post > pre-inter> inter blending.

Energy Efficient Selection Scheme for Multiple Wireless Network Interfaces of Mobile Devices (다중 무선 네트워크 휴대 장치를 위한 에너지 효율적인 네트워크 인터페이스 선택 기법)

  • Kim, Bong-Jae;Min, Hong;Gu, Bon-Chul;Jung, Jin-Man;Cho, Yoo-Kun;Heo, Jun-Young;Hong, Ji-Man
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1194-1198
    • /
    • 2010
  • Recent mobile devices have multiple wireless network interfaces. Therefore, we can use a more 'energy efficient network interface for reducing energy consumption' according to the network environment without depending on a specific network interface. In this paper, we propose an energy efficient wireless network interface selection scheme for mobile devices with multiple wireless network interfaces. The proposed scheme selects a more energy efficient network interface for data communication by using polling. Also, we show that our scheme is more efficient in terms of energy consumption.

Size Reduction Characteristics of Yellow Poplar in a Laboratory Knife Mill

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Size reduction is one of the major pre-processing operations in using biomass as a source of energy or raw materials for forest products industry. The grinding characteristics of dried yellow poplar wood chips were investigated using laboratory knife mill with three different screen aperture diameters to provide the basic information for the optimizing of size reduction processes in biomass industry. Average specific energy consumptions were 0.157, 0.137, and 0.093 Wh/g for the screen aperture diameters of 5.0, 7.5, and 9.0 mm, respectively. According to the results of size distribution analysis of ground particles, the sizes of the most of ground particles were much smaller than the aperture diameters of the screens installed on knife mill used in this study.

Evaluation of Refining Process Based on the Inch Contact Theory (인치콘택 이론을 이용한 리파이닝 공정 평가)

  • 이학래;서만석;허용대;강태영
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.6-11
    • /
    • 2003
  • Refining process is of critical importance unit process for papermaking that influences freeness as well as many mechanical and physical properties of paper. Refining is the process that requires extensive amount of electrical energy. Thus it is required to evaluate the refining process in terms of its influence on fiber and paper properties as well as its effect on energy consumption. In this study, to evaluate the efficiency of refining process the theory of inch contacts has been employed, and the influence of refining processes on fiber and paper properties has been determined and discussed.

Optimized QCA SRAM cell and array in nanoscale based on multiplexer with energy and cost analysis

  • Moein Kianpour;Reza Sabbaghi-Nadooshan;Majid Mohammadi;Behzad Ebrahimi
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.521-531
    • /
    • 2023
  • Quantum-dot cellular automata (QCA) has shown great potential in the nanoscale regime as a replacement for CMOS technology. This work presents a specific approach to static random-access memory (SRAM) cell based on 2:1 multiplexer, 4-bit SRAM array, and 32-bit SRAM array in QCA. By utilizing the proposed SRAM array, a single-layer 16×32-bit SRAM with the read/write capability is presented using an optimized signal distribution network (SDN) crossover technique. In the present study, an extremely-optimized 2:1 multiplexer is proposed, which is used to implement an extremely-optimized SRAM cell. The results of simulation show the superiority of the proposed 2:1 multiplexer and SRAM cell. This study also provides a more efficient and accurate method for calculating QCA costs. The proposed extremely-optimized SRAM cell and SRAM arrays are advantageous in terms of complexity, delay, area, and QCA cost parameters in comparison with previous designs in QCA, CMOS, and FinFET technologies. Moreover, compared to previous designs in QCA and FinFET technologies, the proposed structure saves total energy consisting of overall energy consumption, switching energy dissipation, and leakage energy dissipation. The energy and structural analyses of the proposed scheme are performed in QCAPro and QCADesigner 2.0.3 tools. According to the simulation results and comparison with previous high-quality studies based on QCA and FinFET design approaches, the proposed SRAM reduces the overall energy consumption by 25%, occupies 33% smaller area, and requires 15% fewer cells. Moreover, the QCA cost is reduced by 35% compared to outstanding designs in the literature.

A Study on Emissions and Catalytic Conversion Efficiency Characteristics of an Electronic Control Engine Using Ethanol Blended Gasoline as Fuels

  • Cho Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.722-728
    • /
    • 2005
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiency characteristics were investigated in a multiple-point EFI gasoline engine, The results show that with the increase of ethanol concentration in the blended fuels, THC emissions were drastically reduced by up to thirty percent, And brake specific fuel consumption was increased, but brake specific energy consumption could be improved. However, unburned ethanol and acetaldehyde emissions increased. Pt/Rh based three-way catalysts were effective to reduce acetaldehyde emissions, but had low catalytic conversion efficiency for unburned ethanol. The effect of ethanol on CO and NOx emissions and their catalytic conversion efficiency had close relation to the engine's speed, load and air/fuel ratio. Furthermore fuels blended with thirty percent ethanol by volume could dramatically reduced THC CO and NOx emissions at idle speed.

Performance of a Spark Ignition Engine Fueled with Methanol (메탄올 使용時 의 電氣점火機關 의 性能 에 關한 硏究)

  • 유병철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.121-132
    • /
    • 1982
  • Engine torque, specific fuel consumption and MBT spark advance of a domestic automotive engine fueled with methanal-gasoline blends or straight methanal were studied under steady state condition and compared to those obtained with gasoline. The effects of adding methanal to gasoline on engine performance were studied with or without any carburetor modification. At first, the engine was operated without any modification. Next, the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally, the diameters of metering orifices in carburetor were modified to give the same excess air factor for 15% mixture of methanal in gasoline by volume as for gasoline with standard metering orifices in carburetor. The effects of adding methanal to gasoline on engine torque, specific energy consumption and MBT spark advance can be explained on the basis of change in stoichiometry caused by the addition of methanal to gasoline.