DOI QR코드

DOI QR Code

Optimized QCA SRAM cell and array in nanoscale based on multiplexer with energy and cost analysis

  • Moein Kianpour (Department of Electrical Engineering, Science and Research Branch, Islamic Azad University) ;
  • Reza Sabbaghi-Nadooshan (Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University) ;
  • Majid Mohammadi (Faculty of Engineering, Shahid Bahonar University) ;
  • Behzad Ebrahimi (Department of Electrical Engineering, Science and Research Branch, Islamic Azad University)
  • Received : 2023.04.26
  • Accepted : 2023.08.22
  • Published : 2023.12.25

Abstract

Quantum-dot cellular automata (QCA) has shown great potential in the nanoscale regime as a replacement for CMOS technology. This work presents a specific approach to static random-access memory (SRAM) cell based on 2:1 multiplexer, 4-bit SRAM array, and 32-bit SRAM array in QCA. By utilizing the proposed SRAM array, a single-layer 16×32-bit SRAM with the read/write capability is presented using an optimized signal distribution network (SDN) crossover technique. In the present study, an extremely-optimized 2:1 multiplexer is proposed, which is used to implement an extremely-optimized SRAM cell. The results of simulation show the superiority of the proposed 2:1 multiplexer and SRAM cell. This study also provides a more efficient and accurate method for calculating QCA costs. The proposed extremely-optimized SRAM cell and SRAM arrays are advantageous in terms of complexity, delay, area, and QCA cost parameters in comparison with previous designs in QCA, CMOS, and FinFET technologies. Moreover, compared to previous designs in QCA and FinFET technologies, the proposed structure saves total energy consisting of overall energy consumption, switching energy dissipation, and leakage energy dissipation. The energy and structural analyses of the proposed scheme are performed in QCAPro and QCADesigner 2.0.3 tools. According to the simulation results and comparison with previous high-quality studies based on QCA and FinFET design approaches, the proposed SRAM reduces the overall energy consumption by 25%, occupies 33% smaller area, and requires 15% fewer cells. Moreover, the QCA cost is reduced by 35% compared to outstanding designs in the literature.

Keywords

Acknowledgement

This work was supported by Shahid Rajaee Teacher Training University under grant number 4951.

References

  1. Abedi D., Jaberipur Gh. and Sangsefidi M. (2015), "Coplanar Full adder in quantum-dot cellular automata via clock-zone-based crossover", IEEE T. Nanotechnol., 14(3), 497-504. https://doi.org/10.1109/TNANO.2015.2409117. 
  2. Ahmad F. (2017), "An optimal design of QCA based 2n :1/1:2n multiplexer/demultiplexer and its efficient digital logic realization", Microproc. Microsyst., 56, 64-75. https://doi.org/10.1016/j.micpro.2017.10.010.
  3. Angizi S., Sarmadi S., Sayedsalehi S. and Navi K. (2015), "Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata", Microelectr. J., 46(1), 43-51. https://doi.org/10.1016/j.mejo.2014.10.003.
  4. Babaie S., Sadoghifar A. and Newaz Bahar A. (2019), "Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA)", IEEE T Circuits Syst. II, 66(6), 963-967. https://doi.org/10.1109/TCSII.2018.2873797.
  5. Bhanja S. and Sarkar S. (2006), "Probabilistic modeling of qca circuits using bayesian networks", IEEE T. Nanotechnol., 5(6), 657-670. https://doi.org/10.1109/TNANO.2006.883474.
  6. Campos, C.A.T., Marciano, A.L., Neto, O.P.V. and Torres, F.S. (2016), "Use: A universal, scalable, and efficient clocking scheme for QCA", IEEE T Comput. Aid. Des. Integr. Circ. Syst., 35(51), 3-7. https://doi.org/10.1109/TCAD.2015.2471996.
  7. Chuan M.W., Wong K.L., Hamzah A., Rusli S., Alias N.E., Lim C.S. and Tan M.L.P. (2021), "Device modelling and performance analysis of two-dimensional AlSi3 ballistic nano-transistor", Adv. Nano Res., 10(1), 91-99. https://doi.org/10.12989/anr.2021.10.1.091.
  8. Chuan M.W., Wong K.L., Hamzah A., Rusli S., Alias N.E., Lim C.S. and Tan M.L.P. (2020), "Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties", Adv. Nano Res., 9(2), 105-112. https://doi.org/10.12989/anr.2020.9.2.105.
  9. Chuan M.W., Wong Y.B., Hamzah A., Alias N.E., Mohamed Sultan S., Lim C.S. and Tan. M.L.P. (2022), "Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach", Adv. Nano Res., 12(2), 213-221. https://doi.org/10.12989/anr.2022.12.2.213.
  10. Das J.C. and De D. (2016a), "Shannon's expansion theorem-based multiplexer synthesis using QCA", Nanomater. Energy, 5(1), 53-60. https://doi.org/10.1680/jnaen.15.00008.
  11. Das J.C. and De D.D. (2016b), "Optimized multiplexer design and simulation using quantum dot-cellular automata", Indian J. Pure Appl. Phys. IJPAP, 54(12), 802-811. http://doi.org/10.56042/ijpap.v54i12.6108.
  12. Dehkordi M.A., Shamsabadi A.S., Ghahfarokhi B.S. and Vafaei A. (2011), "Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata", Microelectr. J., 42(5), 701-708. https://doi.org/10.1016/j.mejo.2011.02.006.
  13. Graunke C.R., Wheeler D.I., Tougaw D., and Will J.D. (2005), "Implementation of a crossbar network using quantum-dot cellular automata", IEEE T. Nanotechnol., 4(4), 435-440. https://doi.org/10.1109/TNANO.2005.851278.
  14. Hashemi, S. and Navi, K. (2012), "New robust QCA D flip flop and memory structures," Microelectr. J., 43(12), 929-940. https://doi.org/10.1016/j.mejo.2012.10.007.
  15. Heydari, M., Xiaohu, Z., Lai, K.K. and Afro, S. (2019), "A cost-aware efficient RAM structure based on quantum-dot cellular automata nanotechnology", Int. J. Theor. Phys., 58(4), 3961-3972. https://doi.org/10.1007/s10773-019-04261-x.
  16. Karl, E., Guo, Z., Conary, J., Miller, J., Ng, Y., Nalam, S., Kim, D., Keane, J., Wang, X., Bhattacharya, U. and Zhang, K. (2016), "A 0.6 V, 1.5 GHz 84 Mb SRAM in 14 nm FinFET CMOS technology with capacitive charge-sharing write assist circuitry", IEEE J. Solid State Circ., 51(1), 222-229. https://doi.org/10.1109/JSSC.2015.2461592.
  17. Khosroshahy, M.B., Moaiyeri, M.H., Navi, K. and Bagherzadeh, N. (2017), "An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata", Results Phys., 7, 3543-3551. https://doi.org/10.1016/j.rinp.2017.08.067.
  18. Kianpour, M. and Sabbaghi-Nadooshan, R. (2016), "A novel quantum-dot cellular automata X-bit × 32-bit SRAM", IEEE T VLSI Syst., 24(3), 827-836. https://doi.org/10.1109/TVLSI.2015.2418278.
  19. Liu W., Lu L., O'Neill M. and Swartzlander E.E. (2010), "Montgomery modular multiplier design in quantumdot cellular automata using cut-set retiming", Proceedings of the 10th IEEE Conference Nanotechnology (IEEE-NANO), U.S.A., August.
  20. Liu W., Lu L., O'Neill M. and Swartzlander EE. (2014), "A first step toward cost functions for quantum-dot cellular automata designs", IEEE T. Nanotechnol., 13(3), 476-487. https://doi.org/10.1109/TNANO.2014.2306754.
  21. Liu W., Lu L., O'Neill M., and Swartzlander E.E. (2011), "Design rules for quantum-dot cellular automata", Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, May.
  22. Liu W., Srivastava S., Lu L., O'Neill M. and Swartzlander E.E. (2012), "Are Q.C.A. cryptographic circuits resistant to power analysis attack?", IEEE T. Nanotechnol., 11(6), 1239-1251. https://doi.org/10.1109/TNANO.2012.2222663.
  23. Mead C. and Rem M. (1979), "Cost and performance of VLSI computing structures", IEEE T. Electr. Devices, 14(2), 455-462. https://doi.org/10.1109/JSSC.1979.1051197.
  24. Mubarakali, A., Ramakrishnan, J., Mavaluru, D., Elsir, A., Elsier, O. and Wakil, K. (2019), "A new efficient design for random access memory based on quantum dot cellular automata nanotechnology", Nano Commun. Networks, 21, 100252. https://doi.org/10.1016/j.nancom.2019.100252.
  25. Oh T., Jeong H., Kang K., Park J., Yang Y., and Jung S. (2017), "Power-gated 9T SRAM cell for low-energy operation", IEEE T VLSI Syst., 25(3), 1183-1187. https://doi.org/10.1109/TVLSI.2016.2623601.
  26. Orlov A., Amlani I., Bernstein G., Lent C. and Snider G. (1997), "Realization of a functional cell for quantum-dot cellular automata", Science, 277(5328), 928-930. https://doi.org/10.1126/science.277.5328.928.
  27. Perez-Martineza F., Farrer I., Anderson D., Jones G.A.C., Ritchie D.A., Chorley S.J. and Smith C.G. (2007), "Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructure", Appl. Phys. Lett., 91(3), 032102. https://doi.org/10.1063/1.2759257.
  28. Pourreza T., Alijani A., Maleki V. A. and Kazemi A. (2021), "Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current", Adv. Nano Res., 10(5), 481-491. https://doi.org/10.12989/anr.2021.10.5.481.
  29. Pudi V. and Sridharan K. (2012), "New decomposition theorems on majority logic for low-delay adder designs in quantum dot cellular automata", IEEE T. Circ. Syst. II, 59(10), 678-682. https://doi.org/10.1109/TCSII.2012.2213356.
  30. Pulimeno A., Graziano M., Demarchi D. and Piccinini G. (2012), "Towards a molecular QCA wire: simulation of write-in and read-out systems", Solid State Electr., 77, 101-107. https://doi.org/10.1016/j.sse.2012.05.022.
  31. Sabbaghi-Nadooshan R. and Kianpour M. (2014), "A novel QCA implementation of MUX-based universal shift register", J. Comput. Electron. 13(1), 198-210. https://doi.org/10.1007/s10825-013-0500-9.
  32. Sergeyev D. (2021), "One-dimensional Schottky nanodiode based on telescoping polyprismanes", Adv. Nano Res., 10(4), 339-347. https://doi.org/10.12989/anr.2021.10.4.339.
  33. Shamsabadi A.S., Ghahfarokhi B.S., Zamanifar K. and Movahedinia N. (2009), "Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study", J. Syst. Arch., 55(3), 180-187. https://doi.org/10.1016/j.sysarc.2008.11.001.
  34. Shin C., Damrongplasit N., Sun X., Tsukamoto Y., Nikoli'c B., and Liu T.J.K. (2011), "Performance and yield benefits of quasi-planar bulk CMOS technology for 6-T SRAM at the 22-nm node", IEEE T. Electr. Devices, 58(7), 1846-1854. https://doi.org/10.1109/TED.2011.2139213.
  35. Smith C., Gardelis S., Rushforth A., Crook R., Cooper J., Ritchie D.A., Linfield, E.H., Jin, Y. and Peppe, M. (2003), "Realization of quantum-dot cellular automata using semiconductor quantum dots", Superlatt. Microstruct., 34(3-6), 195-203. https://doi.org/10.1016/j.spmi.2004.03.009.
  36. Song Z., Xie G., Cheng X., Wang L. and Zhang Y. (2020), "An ultra-low cost multilayer ram in quantum-dot cellular automata", IEEE T. Circ. Syst. II, 67(12), 3397-3401. https://doi.org/10.1109/TCSII.2020.2988046.
  37. Srivastava S., Asthana A., Bhanja S. and Sarkar S. (2011), "QCAPro-an error-power estimation tool for QCA circuit design", Proceedings of the IEEE international symposium on circuits and systems (ISCAS), Rio de Janeiro, Brazil, May.
  38. Thompson, C. (1980), "A complexity theory for VLSI", Ph.D. dissertation, Carnegie Mellon University, Pittsburgh.
  39. Timler J. and Lent C.S. (2002), "Power gain and dissipation in quantum dot cellular automata", J. Appl. Phys., 91, 823-830. https://doi.org/10.1063/1.1421217.
  40. Tougaw D. and Khatun M. (2013), "A scalable signal distribution network for quantum-dot cellular automata", IEEE T. Nanotechnol., 12(2), 215-224. https://doi.org/10.1109/TNANO.2013.2243162.
  41. Tougaw P. and Lent C. (1994), "Logical devices implemented using quantum cellular automata", J. Appl. Phys., 75(3), 1818-1825. https://doi.org/10.1063/1.356375.
  42. Vacca M., Graziano M. and Zamboni M. (2011), "Asynchronous solutions for nano-magnetic logic circuits", ACM J. Emerg. Technol. Comput. Syst., 7(4), 1-18. https://doi.org/10.1145/2043643.2043645.
  43. Vankamamidi V., Ottavi M. and Lombardi F. (2005), "A line-based parallel memory for QCA implementation", IEEE T. Nanotechnol., 4(6), 690-698. https://doi.org/10.1109/TNANO.2005.858589.
  44. Walus K., Dysart TJ., Jullien GA. and Budiman RA. (2004), "QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata", IEEE T. Nanotechnol., 3(1), 26-31. https://doi.org/10.1109/TNANO.2003.820815.
  45. Yang X., Cai L., Huang H. and Zhao X. (2012), "A comparative analysis and design of quantum-dot cellular automata memory cell architecture", Int. J. Circ. Theor. Appl., 40(1), 93-103. https://doi.org/10.1002/cta.710.
  46. Yang Y., Park J., Song S.C., Wang J., Yeap G. and Jung S. (2014), "Single-ended 9T SRAM cell for near-threshold voltage operation with enhanced read performance in 22-nm FinFET technology", IEEE T VLSI Syst., 23(11), 2748-2752. https://doi.org/10.1109/TVLSI.2014.2367234.