• Title/Summary/Keyword: Special bridge

Search Result 210, Processing Time 0.024 seconds

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Application of Simple Method of Vibration Analysis to the Simply Supported Sandwich Panels with Point Mass/Masses (첨가된 질량이 있는 단순지지된 샌드위치 패널에 대한 간편한 진동해석의 적용)

  • Lee, Jung-ho;Kim, Seong-Hwan;Jung, Kyoung-il;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.139-145
    • /
    • 1996
  • Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special othotropic plates. A method of calculating the natural frequency corresponding to the first mode of vibration of beam and tower structures with irregular cross-sections was developed and reported by D. H. Kim in 1974. Since 1989, The author has extended this method to Vibration analysis of two dimensional problems including composite laminates, and has reported at several conferenes. Frequently, the bridge floor panels are supported by girders and cross beams. Such panels as well as some of the building floor panels can be assumed as simple supported special orthotropic plates. In this paper, the result of application of simple method of vibration analysis developed by D. H. Kim, to the simply supported sandwich panels with point Mass/Masses is presented.

  • PDF

Drilled Shaft Designs and Constructions using Pile Load Tests at the Government-Financed Section of Incheon Bridge (재하시험을 활용한 인천대교 국고구간 현장타설말뚝의 설계와 시공)

  • Cho, Sung-Min;Jeon, Byeong-Seob;Chung, Il-Hwan;Choi, Go-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.562-573
    • /
    • 2006
  • Incheon Bridge which will be the world's 5th long cable-stayed bridge in 2009 has been built under the management by Korea Highway Corporation. Incheon Bridge consists of several special-featured bridges and construction sections are divided into two groups, the private investment section with the foreign concessionaire and the government-financed section. 8 pile load tests were performed to investigate the behavior of rock-embedded large-diameter drilled shafts at both sections. Among these, 4 tests at the government-financed section have been utilized to adjust the detailed designs that were carried out individually as well as to find the actual bearing capacity of the ground prior to the commencement of constructions under the joint control of all contractors. Comprehensive procedures of the design and the construction of foundations using pile load tests were introduced.

  • PDF

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

Cathodic Protection Behavior of Coastal Bridge Structure with Sacrificial Anode Cathodic Protection System (희생양극식 음극방식이 적용된 해안 교량 구조물의 방식거동)

  • Ha, Ji-Myung;Jin, Chung-Kuk;Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.242-246
    • /
    • 2012
  • This measurement represents the effectiveness of sacrificial anode cathodic protection (SACP) system in a coastal bridge structure. To verify the cathodic protection (CP) effect, the monitoring sensor (DMS-100) that could measure potential, corrosion rate, current, concrete resistivity, and temperature was embedded. The measurement conducted for three years after CP system was installed. Specifically, due to the fact that fresh water and sea water was repeated in the bridge structure, this bridge structure presented special CP behavior. Measurement factors were CP potential, CP current, concrete resistivity, and depolarization potential. In addition, visual inspection was also carried out. As a result of current and depolarization measurement, CP system was well activated in most piers.

CALS oriented design/fabrication information system for steel bridges

  • Isohata, Hiroshi;Fukuda, Masahiko;Watanabe, Sueo
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.13-32
    • /
    • 2003
  • In this paper design and fabrication information system for steel bridge construction is studied and proposed according to the progress of Construction CALS/EC in the construction industry in Japan. The data exchange in this system bases on the text file as well as CAD data with simplified drawings. The concept of this system is discussed following the analysis on the issues of the conventional system. The application of the product model is also discussed including effects and issues on the inspection system. This paper is based on the study carried out by Special Committee on Construction CALS of JASBC to which author belong.

The Fatigue behavior of strengthened bridge deck with Carbon Fiber Rod (탄소섬유 Rod로 성능향상된 교량 바닥판의 피로거동)

  • 심종성;김민수;김영호;주민관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-318
    • /
    • 2002
  • The use of carbon fiber rods is a promising technology of increasing flexural and shear strength of deficient reinforced concrete members. The purpose of this experimental study is to investigate the fatigue behavior and strengthening effects of the strengthened bridge deck with isotropic and othortropic carbon fiber rod. This study shows a fatigue loading, compliance and S-N Curve between strengthened isotropically and othortropically. Then estimate the effective fatigue behavior of RC slab using composite rods that are inserted in high special purposed polymer mortar.

  • PDF

Research on serviceability indicators and evaluation method for the revision of Special Act on Safety and maintenance of facilities (시특법 개정을 위한 서비스 성능 지표 설정 및 평가 방법 연구)

  • Park, Taeil;Park, Wonyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.312-313
    • /
    • 2018
  • As global climate change leaded to extensive natural disaster and radical deterioration of infrastructures, there was increased attentions for the evaluation of infrastructures. After the collapse of Seongsu Bridge in 1994, Korea has enacted the "Special act on safety and maintenance of facilities" and secured the safety of facilities using systematic and periodic safety inspections. However, current facility inspections are mainly performed by the physical defect and structural analysis, and do not properly consider the serviceability of infrastructure such as capacity of facility and user's satisfaction. Thus, the purpose of the study is to develop an evaluation criteria for serviceability of infrastructures and finally leading to the revision of "Special Act on safety and maintenance of facilities in rational manner.

  • PDF

Interdisciplinary Procedure for Scour Estimation at Inchon 2nd Bridge Piers (인천 제2연육교 세굴문제 해결을 위한 학제간 공동연구 방안)

  • Yeo, Woon-Kwang;Kim, Jeong-Hwan;Lee, Yang-Ku;Kim, Tae-In;Kim, Jong-In;Kwak, Ki-Seok;Lee, Jong-Kook;Kwak, Moon-Soo;Kim, Moon-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.71-80
    • /
    • 2005
  • More than 100 bridges have been annually collapsed or seriously damaged by scouring in Korea. It is extremely hard to understand the complicated scour mechanism and estimate the scour depth with accuracy in fields, however since scouring is a very complex manifestation of sediment transport unable to describe with a simple mathematical tool. In order to obtain the reasonable solution to bridge scouring, therefore, the interdisciplinary co-operation is strongly recommended. In this study the special task force team for the scour problems around Incheon 2nd bridge piers is made, in which all kinds of scour oriented researches such as oceangraphic survey, hydraulic model test, numerical simulation, scour rate test, real-time scour monitoring, etc will be carried out. This paper provides this interdisciplinary procedure in details.

  • PDF

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Support (탄성지지된 3경간 철근콘크리트 교량의 간단한 진동해석법)

  • Kim, Duk-Hyun;Han, Bong-Koo
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2004
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper, The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.