• Title/Summary/Keyword: Special Purpose Company(SPC)

Search Result 12, Processing Time 0.025 seconds

Study on Operating System Improvements to the Competitiveness of Busan Port (부산항 경쟁력 강화를 위한 운영체제 개선에 관한 연구)

  • Seo, Su-Wan
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.4
    • /
    • pp.191-208
    • /
    • 2018
  • This paper focuses on the integration aspect of operators to determine an improvement strategy for the operating system to enhance competitiveness of Busan Port. This Study proposes the following alternatives: valuation standards for the integration of operators, the road map for the integration period, the scope and role setting of integrated operators' participation of Busan Port Authority(BPA), and the separation and linkage North Port and the New Port operators. First, the valuation standards for operator integration should be based on international standards. Additionally quantitative factors such as financial situation, business performance and participating companies' profitability, and the qualitative factors such as management ability, technology, and labor relations should be considered. Second, the timing of North Port's operator integration should be prioritized in the short term in conjunction with the commencement of its phase 2-4, 2-5, and 2-6. The integration of New Port operators should provide a road map for a relatively long-term perspective. Third, the participation of BPA' integrated operators should be considered in terms of publicity as a policy coordinator between terminals and by pursuing the profitability of entering into overseas business by fostering Korean global terminal operators. The scope and role of participation ensures that the experience and technology of the terminal operation business is maximized. Fourth, because physically intergrating the North Port' operator into a single corporate form is difficult, initially establishing a special purpose company to maximize the effect of the integrated operation is necessary. Then, the operators decided to convert to a holding company given the termination of the lease term contract with the State or BPA, and ultimately proposed a merger into a single corporation.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.