• Title/Summary/Keyword: Spatio-temporal pattern

Search Result 151, Processing Time 0.031 seconds

Two stage neural network for spatio-temporal pattern recognition (시변패턴 인식을 위한 2단 구조의 신경회로망)

  • Lim, Chung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2290-2292
    • /
    • 1998
  • This paper introduces Two-stage neural network that is capable of recognizing spatio-temporal patterns. First stage takes a spatio-temporal pattern as input and compress it into sparse spatio-temporal pattern. Second stage is for temporal pattern recognition with nonuniform inhibitory connections and different cell sizes. These are basic properties for detecting a embeded pattern in a larger pattern. The network is evaluated by computer simulation.

  • PDF

A Comparison of Performance between STMP/MST and Existing Spatio-Temporal Moving Pattern Mining Methods (STMP/MST와 기존의 시공간 이동 패턴 탐사 기법들과의 성능 비교)

  • Lee, Yon-Sik;Kim, Eun-A
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.49-63
    • /
    • 2009
  • The performance of spatio-temporal moving pattern mining depends on how to analyze and process the huge set of spatio-temporal data due to the nature of it. The several method was presented in order to solve the problems in which existing spatio-temporal moving pattern mining methods[1-10] have, such as increasing execution time and required memory size during the pattern mining, but they did not solve properly yet. Thus, we proposed the STMP/MST method[11] as a preceding research in order to extract effectively sequential and/or periodical frequent occurrence moving patterns from the huge set of spatio-temporal moving data. The proposed method reduces patterns mining execution time, using the moving sequence tree based on hash tree. And also, to minimize the required memory space, it generalizes detailed historical data including spatio-temporal attributes into the real world scopes of space and time by using spatio-temporal concept hierarchy. In this paper, in order to verify the effectiveness of the STMP/MST method, we compared and analyzed performance with existing spatio-temporal moving pattern mining methods based on the quantity of mining data and minimum support factor.

  • PDF

Neural Network Design for Spatio-temporal Pattern Recognition (시공간패턴인식 신경회로망의 설계)

  • Lim, Chung-Soo;Lee, Chong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1464-1471
    • /
    • 1999
  • This paper introduces complex-valued competitive learning neural network for spatio-temporal pattern recognition. There have been quite a few neural networks for spatio-temporal pattern recognition. Among them, recurrent neural network, TDNN, and avalanche model are acknowledged as standard neural network paradigms for spatio-temporal pattern recognition. Recurrent neural network has complicated learning rules and does not guarantee convergence to global minima. TDNN requires too many neurons, and can not be regarded to deal with spatio-temporal pattern basically. Grossberg's avalanche model is not able to distinguish long patterns, and has to be indicated which layer is to be used in learning. In order to remedy drawbacks of the above networks, unsupervised competitive learning using complex umber is proposed. Suggested neural network also features simultaneous recognition, time-shift invariant recognition, stable categorizing, and learning rate modulation. The network is evaluated by computer simulation with randomly generated patterns.

  • PDF

The Efficient Spatio-Temporal Moving Pattern Mining using Moving Sequence Tree (이동 시퀀스 트리를 이용한 효율적인 시공간 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.237-248
    • /
    • 2009
  • Recently, based on dynamic location or mobility of moving object, many researches on pattern mining methods actively progress to extract more available patterns from various moving patterns for development of location based services. The performance of moving pattern mining depend on how analyze and process the huge set of spatio-temporal data. Some of traditional spatio-temporal pattern mining methods[1-6,8-11]have proposed to solve these problem, but they did not solve properly to reduce mining execution time and minimize required memory space. Therefore, in this paper, we propose new spatio-temporal pattern mining method which extract the sequential and periodic frequent moving patterns efficiently from the huge set of spatio-temporal moving data. The proposed method reduces mining execution time of $83%{\sim}93%$ rate on frequent moving patterns mining using the moving sequence tree which generated from historical data of moving objects based on hash tree. And also, for minimizing the required memory space, it generalize the detained historical data including spatio-temporal attributes into the real world scope of space and time using spatio-temporal concept hierarchy.

Mining Spatio-Temporal Patterns in Trajectory Data

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.521-536
    • /
    • 2010
  • Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.

An Efficient Algorithm for Spatio-Temporal Moving Pattern Extraction (시공간 이동 패턴 추출을 위한 효율적인 알고리즘)

  • Park, Ji-Woong;Kim, Dong-Oh;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.2 s.17
    • /
    • pp.39-52
    • /
    • 2006
  • With the recent the use of spatio-temporal data mining which can extract various knowledge such as movement patterns of moving objects in history data of moving object gets increasing. However, the existing movement pattern extraction methods create lots of candidate movement patterns when the minimum support is low. Therefore, in this paper, we suggest the STMPE(Spatio-Temporal Movement Pattern Extraction) algorithm in order to efficiently extract movement patterns of moving objects from the large capacity of spatio-temporal data. The STMPE algorithm generalizes spatio-temporal and minimizes the use of memory. Because it produces and keeps short-term movement patterns, the frequency of database scan can be minimized. The STMPE algorithm shows more excellent performance than other movement pattern extraction algorithms with time information when the minimum support decreases, the number of moving objects increases, and the number of time division increases.

  • PDF

A Study on the recognition of local name using Spatio-Temporal method (Spatio-temporal방법을 이용한 지역명 인식에 관한 연구)

  • 지원우
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.121-124
    • /
    • 1993
  • This paper is a study on the word recognition using neural network. A limited vocabulary, speaker independent, isolated word recognition system has been built. This system recognizes isolated word without performing segmentation, phoneme identification, or dynamic time wrapping. It needs a static pattern approach to recognize a spatio-temporal pattern. The preprocessing only includes preceding and tailing silence removal, and word length determination. A LPC analysis is performed on each of 24 equally spaced frames. The PARCOR coefficients plus 3 other features from each frame is extracted. In order to simplify a structure of neural network, we composed binary code form to decrease output nodes.

  • PDF

Spatio-temporal Semantic Features for Human Action Recognition

  • Liu, Jia;Wang, Xiaonian;Li, Tianyu;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2632-2649
    • /
    • 2012
  • Most approaches to human action recognition is limited due to the use of simple action datasets under controlled environments or focus on excessively localized features without sufficiently exploring the spatio-temporal information. This paper proposed a framework for recognizing realistic human actions. Specifically, a new action representation is proposed based on computing a rich set of descriptors from keypoint trajectories. To obtain efficient and compact representations for actions, we develop a feature fusion method to combine spatial-temporal local motion descriptors by the movement of the camera which is detected by the distribution of spatio-temporal interest points in the clips. A new topic model called Markov Semantic Model is proposed for semantic feature selection which relies on the different kinds of dependencies between words produced by "syntactic " and "semantic" constraints. The informative features are selected collaboratively based on the different types of dependencies between words produced by short range and long range constraints. Building on the nonlinear SVMs, we validate this proposed hierarchical framework on several realistic action datasets.

Analysis on Spatio-Temporal Pattern and Regionalization of Extreme Rainfall Data (극치강수량의 시공간적 특성 분석 및 지역화에 관한 연구)

  • Lee, Jeong-Ju;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.13-20
    • /
    • 2011
  • The spatio-temporal pattern in precipitation is a significant element in defining characteristics of precipitation. In this study, a new scheme on regionalization utilizing temporal information was introduced on the basis of existing approaches that is mainly based on simple moments of data and geographical information. Given the identified spatio-temporal pattern, this study was extended to characterize regional pattern of annual maximum rainfall over Korea. We have used circular statistics to characterize the temporal distribution on the precipitation, and the circular statistics allow us to effectively assess changes in timing of the extreme rainfall in detail. In this study, a modified K-means method was incorporated with derived temporal characteristics of extreme rainfall in order to better characterize hydrologic pattern for regional frequency analysis. The extreme rainfall was reasonably separated into five categories that considered most attributes in both quantitative and temporal changes in extremes. The results showed that the proposed approach is a promising approach for regionalization in term of physical understanding of extreme rainfall.

A Study on the Voice-Controlled Wheelchair using Spatio-Temporal Pattern Recognition Neural Network (Spatio-Temporal Pattern Recognition Neural Network를 이용한 전동 휠체어의 음성 제어에 관한 연구)

  • Baek, S.W.;Kim, S.B.;Kwon, J.W.;Lee, E.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.90-93
    • /
    • 1993
  • In this study, Korean speech was recognized by using spatio-temporal recognition neural network. The subjects of speech are numeric speech from zero to nine and basic command which might be used for motorized wheelchair developed it own Lab. Rabiner and Sambur's method of speech detection was used in determining end-point of speech, speech parameter was extracted by using LPC 16 order. The recognition rate was over 90%.

  • PDF