• 제목/요약/키워드: Spatio-temporal fusion method

검색결과 10건 처리시간 0.029초

밝기 및 움직임 정보에 기반한 시공간 영상 분할 (Spatio-Temporal Image Segmentation Based on Intensity and Motion Information)

  • 최재각;이시웅김성대
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.871-874
    • /
    • 1998
  • This paper presents a new morphological spatio-temporal segmentation algorithm. The algorithm incorporates intensity and motion information simultaneously, and uses morphological tools such as morphological filters and watershed algorithm. The procedure toward complete segmetnation consists of three steps: joint marker extraction, boundary decision, and motion-based region fusion. By incorporating spatial and temporal information simultaneously, we can obtain visually meaningful segmentation results. Simulation results demonstrates the efficiency of the proposed method.

  • PDF

결합 유사성 척도를 이용한 시공간 영상 분할 (Spatio-temporal video segmentation using a joint similarity measure)

  • 최재각;이시웅;조순제;김성대
    • 한국통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.1195-1209
    • /
    • 1997
  • This paper presents a new morphological spatio-temporal segmentation algorithm. The algorithm incorporates luminance and motion information simultaneously, and uses morphological tools such as morphological filtersand watershed algorithm. The procedure toward complete segmentation consists of three steps:joint marker extraction, boundary decision, and motion-based region fusion. First, the joint marker extraction identifies the presence of homogeneours regions in both motion and luminance, where a simple joint marker extraction technique is proposed. Second, the spatio-temporal boundaries are decided by the watershed algorithm. For this purposek, a new joint similarity measure is proposed. Finally, an elimination ofredundant regions is done using motion-based region function. By incorporating spatial and temporal information simultaneously, we can obtain visually meaningful segmentation results. Simulation results demonstratesthe efficiency of the proposed method.

  • PDF

지능형 서비스 로봇을 위한 온톨로지 기반의 동적 상황 관리 및 시-공간 추론 (Ontology-Based Dynamic Context Management and Spatio-Temporal Reasoning for Intelligent Service Robots)

  • 김종훈;이석준;김동하;김인철
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1365-1375
    • /
    • 2016
  • 일상생활 환경 속에서 자율적으로 동작하는 서비스 로봇에게 가장 필수적인 능력 중 하나가 동적으로 변화하는 주변 환경에 대한 올바른 상황 인식과 이해 능력이다. 다양한 센서 데이터 스트림들로 부터 신속히 의사 결정에 필요한 고수준의 상황 지식을 생성해내기 위해서는, 멀티 모달 센서 데이터의 융합, 불확실성 처리, 기호 지식의 실체화, 시간 의존성과 가변성 처리, 실시간성을 만족할 수 있는 시-공간 추론 등 많은 문제들이 해결되어야 한다. 이와 같은 문제들을 고려하여, 본 논문에서는 지능형 서비스 로봇을 위한 효과적인 동적 상황 관리 및 시-공간 추론 방법을 제시한다. 본 논문에서는 상황 지식 관리와 추론의 효율성을 극대화하기 위해, 저수준의 상황 지식은 센서 및 인식 데이터가 입력될 때마다 실시간적으로 생성되지만, 반면에 고수준의 상황 지식은 의사 결정 모듈에서 요구가 있을 때만 후향 시-공간 추론을 통해 유도되도록 알고리즘을 설계하였다. Kinect 시각 센서 기반의 Turtlebot를 이용한 실험을 통해, 제안한 방법에 기초한 동적 상황 관리 및 추론 시스템의 높은 효율성을 확인할 수 있었다.

Spatio-temporal Semantic Features for Human Action Recognition

  • Liu, Jia;Wang, Xiaonian;Li, Tianyu;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권10호
    • /
    • pp.2632-2649
    • /
    • 2012
  • Most approaches to human action recognition is limited due to the use of simple action datasets under controlled environments or focus on excessively localized features without sufficiently exploring the spatio-temporal information. This paper proposed a framework for recognizing realistic human actions. Specifically, a new action representation is proposed based on computing a rich set of descriptors from keypoint trajectories. To obtain efficient and compact representations for actions, we develop a feature fusion method to combine spatial-temporal local motion descriptors by the movement of the camera which is detected by the distribution of spatio-temporal interest points in the clips. A new topic model called Markov Semantic Model is proposed for semantic feature selection which relies on the different kinds of dependencies between words produced by "syntactic " and "semantic" constraints. The informative features are selected collaboratively based on the different types of dependencies between words produced by short range and long range constraints. Building on the nonlinear SVMs, we validate this proposed hierarchical framework on several realistic action datasets.

시공간 위성영상 융합기법을 활용한 도시 산림 임연부 인접 토지피복 유형별 식생 활력도 차이 분석 (Analyzing Difference of Urban Forest Edge Vegetation Condition by Land Cover Types Using Spatio-temporal Data Fusion Method)

  • 성웅기;이동근;김예화
    • 환경영향평가
    • /
    • 제27권3호
    • /
    • pp.279-290
    • /
    • 2018
  • 도시화와 인간의 영향으로 도심 내 산림 임연부가 증가함에 따라 도시 산림 관리 측면에서 도시 산림 임연부의 현황 파악과 모니터링의 중요성이 대두되고 있다. 본 연구는 도시 산림 임연부의 현황파악을 위해 시간적 예측, 공간적 예측에서 정확도가 높은 FSDAF(Flexible Spatio-temporal DAta Fusion) 융합 영상 기법을 활용하여 도출한 $NDVI_{max}$ 영상을 사용하여 인접한 토지피복 유형에 따른 도시 산림 임연부의 식생 활력도 차이를 평가하는데 목적이 있다. 서울시 내 도시 산림 임연부를 대상으로 분석해 본 결과, 산림 내부로 갈수록 식생활력도가 증가하는 경향이 나타났다. 임연부에 인접한 4가지 토지피복 유형 중 도로가 산림 임연부에 미치는 영향이 가장 큰 것으로 나타났다. 특히, 도로로부터 산림 임연부의 30m까지 그 영향이 가장 두드러지게 나타났으며, 90m까지 영향을 미치는 것으로 나타났다. 본 연구의 결과는 도시 산림 모니터링 및 도시 산림 임연부 관리 측면에서 토지 피복 유형과 토지피복 변화가 인접한 산림에 미치는 영향을 평가하는데 활용 가능할 것으로 기대된다.

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

위성영상 시공간 융합과 CASA 모형을 활용한 산지 개발사업의 식생 순일차생산량에 대한 영향 평가 (Impact Assessment of Forest Development on Net Primary Production using Satellite Image Spatial-temporal Fusion and CASA-Model)

  • 김예화;주경영;성선용;이동근
    • 한국환경복원기술학회지
    • /
    • 제20권4호
    • /
    • pp.29-42
    • /
    • 2017
  • As the "Guidelines for GHG Environmental Assessment" was revised, it pointed out that the developers should evaluate GHG sequestration and storage of the developing site. However, the current guidelines only taking into account the quantitative reduction lost within the development site, and did not consider the qualitative decrease in the carbon sequestration capacity of forest edge produced by developments. In order to assess the quantitative and qualitative effects of vegetation carbon uptake, the CASA-NPP model and satellite image spatial-temporal fusion were used to estimate the annual net primary production in 2005 and 2015. The development projects between 2006 and 2014 were examined for evaluate quantitative changes in development site and qualitative changes in surroundings by development types. The RMSE value of the satellite image fusion results is less than 0.1 and approaches 0, and the correlation coefficient is more than 0.6, which shows relatively high prediction accuracy. The NPP estimation results range from 0 to $1335.53g\;C/m^2$ year before development and from 0 to $1333.77g\;C/m^2$ year after development. As a result of analyzing NPP reduction amount within the development area by type of forest development, the difference is not significant by type of development but it shows the lowest change in the sports facilities development. It was also found that the vegetation was most affected by the edge vegetation of industrial development. This suggests that the industrial development causes additional development in the surrounding area and indirectly influences the carbon sequestration function of edge vegetaion due to the increase of the edge and influx of disturbed species. The NPP calculation method and results presented in this study can be applied to quantitative and qualitative impact assessment of before and after development, and it can be applied to policies related to greenhouse gas in environmental impact assessment.

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제23권12호
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘 (Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild)

  • 김대하;송병철
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.351-360
    • /
    • 2018
  • 인간 감정 인식은 컴퓨터 비전 및 인공 지능 영역에서 지속적인 관심을 받는 연구 주제이다. 본 논문에서는 wild 환경에서 이미지, 얼굴 특징점 및 음성신호로 구성된 multi-modal 신호를 기반으로 여러 신경망을 통해 인간의 감정을 분류하는 방법을 제안한다. 제안 방법은 다음과 같은 특징을 갖는다. 첫째, multi task learning과 비디오의 시공간 특성을 이용한 준 감독 학습을 사용함으로써 영상 기반 네트워크의 학습 성능을 크게 향상시켰다. 둘째, 얼굴의 1 차원 랜드 마크 정보를 2 차원 영상으로 변환하는 모델을 새로 제안하였고, 이를 바탕으로 한 CNN-LSTM 네트워크를 제안하여 감정 인식을 향상시켰다. 셋째, 특정 감정에 오디오 신호가 매우 효과적이라는 관측을 기반으로 특정 감정에 robust한 오디오 심층 학습 메커니즘을 제안한다. 마지막으로 소위 적응적 감정 융합 (emotion adaptive fusion)을 적용하여 여러 네트워크의 시너지 효과를 극대화한다. 제안 네트워크는 기존의 지도 학습과 반 지도학습 네트워크를 적절히 융합하여 감정 분류 성능을 향상시켰다. EmotiW2017 대회에서 주어진 테스트 셋에 대한 5번째 시도에서, 제안 방법은 57.12 %의 분류 정확도를 달성하였다.

무인항공기에 탑재된 열적외선 센서 기반의 지표면 온도 정사영상 제작 및 피복별 온도 정확도 분석 (Generation of Land Surface Temperature Orthophoto and Temperature Accuracy Analysis by Land Covers Based on Thermal Infrared Sensor Mounted on Unmanned Aerial Vehicle)

  • 박진환;이기림;이원희;한유경
    • 한국측량학회지
    • /
    • 제36권4호
    • /
    • pp.263-270
    • /
    • 2018
  • 지표면 온도는 지면-대기의 상호 순환을 이해하는데 중요한 요소로 알려져 있지만 시공간적 변동성이 크기 때문에 정규적인 관측은 거의 이루어지지 못하고 있다. 기존의 지표면 온도는 위성 영상을 이용하여 관측하고 있지만 위성의 특성상 긴 재방문주기와 낮은 정확도의 한계를 가지고 있다. 본 연구에서는 기존의 위성 영상을 활용한 지표면 온도 관측의 대체가능성을 확인하기 위해 무인항공기에 열적외선 센서를 탑재하여 단일 영상을 취득하였다. 취득된 영상은 JPEG 영상에서 TiFF 영상으로 변환하여 정사영상을 제작하였으며 정사영상의 DN값을 이용하여 실제 지표면 온도로 계산하였다. 계산된 피복별 지표면 온도의 정확도를 평가하기 위해 영상촬영과 동시에 적외선 온도계로 직접 관측한 지표면 온도와 비교하였다. 두 가지 방법으로 관측한 지표면 온도를 비교 했을 때, 모든 피복들에 대해서 정확도가 열적외선 센서의 관측 정확도 이하로 나타났다. 따라서 무인항공기에 탑재된 열적외선 센서를 이용하여 기존의 지표면 온도 관측 방법인 위성 영상의 대체 가능성을 확인하였다.