• 제목/요약/키워드: Spatial-Temporal Data Mining

검색결과 36건 처리시간 0.023초

유사도와 유클리디안 계산패턴을 이용한 CBR 패턴연구 (A Study on the CBR Pattern using Similarity and the Euclidean Calculation Pattern)

  • 윤종찬;김학철;김종진;윤성대
    • 한국정보통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.875-885
    • /
    • 2010
  • 사례기반추론(CBR:Case-Based Reasoning)은 기존 데이터와 사례 데이터들의 관계성을 추론하는 기법으로 유사도(Similarity)와 유클리디안(Euclidean) 거리 계산 방법이 가장 많이 사용되고 있다. 그러나 이 방법들은 기존 데이터와 사례 데이터를 모두 비교하기 때문에 데이터 검색과 필터링에 많은 시간이 소요되는 단점이 있다. 따라서 이를 해결하기 위한 다양한 연구들이 진행되고 있다. 본 논문에서는 기존의 유사도와 유클리디안 계산과정에서 발견된 패턴을 활용한 SE(Speed Euclidean-distance) 계산방법을 제안한다. SE 계산방법은 새로운 사례입력에 발견된 패턴과 가중치를 적용하여 빠른 데이터 추출과 수행시간 단축으로 시간적 공간적 제약사항에 대한 연산 속도를 향상시키고 불필요한 연산 수행을 배제하는 것이다. 실험을 통해 유사도나 유클리디안 방법으로 데이터를 추출하는 기존의 방법보다 제안하는 방법이 다양한 컴퓨터 환경과 처리 속도에서 성능이 향상됨을 확인할 수 있었다.

Kriging Analysis for Spatio-temporal Variations of Ground Level Ozone Concentration

  • Gorai, Amit Kumar;Jain, Kumar Gourav;Shaw, Neha;Tuluri, Francis;Tchounwou, Paul B.
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권4호
    • /
    • pp.247-258
    • /
    • 2015
  • Exposure of high concentration of ground-level ozone (GLO) can trigger a variety of health problems including chest pain, coughing, throat irritation, asthma, bronchitis and congestion. There are substantial human and animal toxicological data that support health effects associated with exposure to ozone and associations have been observed with a wide range of outcomes in epidemiological studies. The aim of the present study is to estimate the spatial distributions of GLO using geostatistical method (ordinary kriging) for assessing the exposure level of ozone in the eastern part of Texas, U.S.A. GLO data were obtained from 63 U.S. EPA's monitoring stations distributed in the region of study during the period January, 2012 to December, 2012. The descriptive statistics indicate that the spatial monthly mean of daily maximum 8 hour ozone concentrations ranged from 30.33 ppb (in January) to 48.05 (in June). The monthly mean of daily maximum 8 hour ozone concentrations was relatively low during the winter months (December, January, and February) and the higher values observed during the summer months (April, May, and June). The higher level of spatial variations observed in the months of July (Standard Deviation: 10.33) and August (Standard Deviation: 10.02). This indicates the existence of regional variations in climatic conditions in the study area. The range of the semivariogram models varied from 0.372 (in November) to 15.59 (in April). The value of the range represents the spatial patterns of ozone concentrations. Kriging maps revealed that the spatial patterns of ozone concentration were not uniform in each month. This may be due to uneven fluctuation in the local climatic conditions from one region to another. Thus, the formation and dispersion processes of ozone also change unevenly from one region to another. The ozone maps clearly indicate that the concentration values found maximum in the north-east region of the study area in most of the months. Part of the coastal area also showed maximum concentrations during the months of October, November, December, and January.

교통흐름에 기인하는 미세먼지 노출 도시인구에 대한 시.공간적 분석 (Spacio-temporal Analysis of Urban Population Exposure to Traffic-Related air Pollution)

  • 이금숙
    • 한국경제지리학회지
    • /
    • 제11권1호
    • /
    • pp.59-77
    • /
    • 2008
  • 자동차를 중심으로 하는 도로교통량이 크게 늘면서 교통에 기인한 다양한 피해 현상들이 나타나고 있다. 특히 교통량이 집중되는 대도시에서는 교통에 기인한 도시민의 건강피해가 심각한 것으로 밝혀지고 있다. 본 연구에서는 교통에 기인한 미세먼지의 피해를 직접적으로 받는 도시인구는 미세먼지의 주 발생원인 교통흐름이 있는 도로변에 가까이에 노출되는 도시민들이라고 보고 도시 공간 내에서 교통흐름과 미세먼지, 그리고 도시 통행인구의 공간적 분포를 분석하였다. 특히 본 연구에서는 대기오염문제가 심각한 서울을 대상으로 교통에 기인한 미세먼지의 실태를 살펴보고, 서울을 둘러싸고 있는 경기도 일대에 대단위 주거지들이 밀집된 신도시들이 개발되면서 나타나는 인구분포와 통행패턴, 그리고 교통흐름 및 미세먼지 농도에 나타나는 공간적 변화와 이들 간의 공간적 관계를 종합적으로 파악하기 위하여 GIS를 적용하였다. 또한 교통카드 트랜잭션 데이터베이스에서 데이터마이닝기법으로 추출해낸 통행흐름 자료를 이용하여 통행시간별 통행인구분포도를 작성하고, 이를 바탕으로 교통에 기인한 미세먼지에 직접 노출하게 되는 도시인구를 산정하는 시 공간적 모형개발을 시도하였다.

  • PDF

한국지질자원연구원 디지털 중력 이상도 (Digital Gravity Anomaly Map of KIGAM)

  • 임무택;신영홍;박영수;임형래;고인세;박창석
    • 지구물리와물리탐사
    • /
    • 제22권1호
    • /
    • pp.37-43
    • /
    • 2019
  • 한국지질자원연구원에서 2000년부터 2018년까지 수행한 중력 탐사 자료를 처리하여 중력 이상도를 작성하였다. 2016년까지는 전국을 대상으로 하는 중력 이상도 작성에 필요한 자료를 빠르게 획득하기 위하여 약 $4km{\times}4km$ 당 1점의 측점 밀도로 약 6,400 점에서 측정을 하였다. 이와는 별개로 광산 개발과 관련하여, 관계 화성암 혹은 기반암의 분포를 규명하기 위하여, 2013년에는 제천 NMC 몰랜드 광산의 주변에서, 그리고 2015년에서 2018년까지는 태백산 광화대 일대에서 수백 미터에서 2 km 정도의 간격으로 탐사를 수행하였다. 한편 2016년과 2017년에는 경주와 포항에서 규모가 큰 지진이 발생하였는데, 이들 진앙지 일대에서는 측점 간격이 250 m 정도가 되도록 더욱 정밀하게 탐사를 하였다. 이들까지 포함한 전체 측점은 9,600여 점이다. 한편, 효율적인 탐사를 위하여 일부 지역에 대해서는 부산대학교의 자료를 사용하였다. 중복점과 임시 기준점을 제외하면 전체 측점은 약 16,000여 점이며, 이를 바탕으로 순높이 이상, 부게 이상, 지각 평형 이상을 계산하였다. 이 중력 이상도는 우리나라에서 가장 고르게 분포하면서 가장 많은 측점을 사용한 중력 이상도로서의 의미를 가진다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

타임스탬프를 갖는 이벤트 시퀀스의 인덱스 기반 검색 (Index-based Searching on Timestamped Event Sequences)

  • 박상현;원정임;윤지희;김상욱
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권5호
    • /
    • pp.468-478
    • /
    • 2004
  • 시퀀스 데이타베이스로부터 원하는 질의 패턴과 일치하는 모든 서브 시퀀스를 검색하는 것은 데이타 마이닝이나 바이오 인포매틱스 등 응용 분야에서 필수적인 연산이다. 예를 들어, 특정한 이벤트가 발생할 때마다 이벤트의 유형과 발생 시각을 기록하는 네트웍 이벤트 관리 시스템에서 네트웍 이벤트들의 연관 관계를 발견하기 위한 전형적인 질의 형태는 다음과 같다: 'CiscoDCDLinkUp이 발생한 후 MLMStatusUP과 TCPConnectionClose가 각각 20초 이내와 40초 이내에 순차적으로 발생하는 모든 경우를 검색하라.' 본 논문에서는 대규모 이벤트 시퀀스 데이타베이스를 대상으로 하여 위와 같은 질의를 효율적으로 처리할 수 있는 인덱싱 방법을 제안한다. 기존의 방법들이 비효율적인 순차적 검색이나 페이지화 하기 어려운 인덱스 구조에 의존하는데 반하여, 제안하는 방법은 저장 및 검색 효율이 입증된 다차원 공간 인덱스를 사용하여 질의를 만족하는 모든 서브 시퀀스를 착오 기각(false dismissal) 없이 신속하게 검색한다. 다차원 공간 인덱스의 입력은 이벤트 시퀀스 데이타베이스 상의 슬라이딩 윈도우 내에서 각 이벤트 유형이 최초로 발생한 시각을 기록한 n 차원 벡터가 된다. 여기서 n은 발생 가능한 이벤트 유형의 수이다. n이 큰 경우는 차원 저주(dimensionality curse) 문제가 발생할 수 있으므로 차원 선택이나 이벤트유형 그루핑을 이용하여 차원을 축소한다. 실험 결과에 의하면 제안된 방법은 순차적 검색이나 ISO-Depth 인덱스 기법에 비하여 몇 배에서 몇 십 배의 성능 향상 효과를 갖는 것으로 나타났다. 것으로 나타났다.예측치가 비교적 유사한 것으로 나타났으며, 평균 절도오차도 10% 수준이었다.HNP 처리구에서 가장 많았던 것으로 나타났다. 지상부 식생에 대한 총 양분함량은(N+P+K+Ca+Mg) 리기다소 나무가 703kg/ha 그리고 낙엽송이 869kg/ha였다.여 주었다.능성을 시도하였고, 그 결과는 다음과 같다. 1. Cholesterol을 제거한 cheese의 제조에서 최적조건은 균질압력 1200psi(70kg$cm^2$), 균질온도 $70^{\circ}$, $\beta$-cyclodextrin 첨가량 2%였으며, 이때 우유의 cholesterol의 제거율이 86.05%로 가장 높게 나타났다. 2. Cholesterol을 제거한 cheese들의 수율은 모두 12.53%(control 10.54%) 이상으로 균질 처리가 cheese의 수율을 18.88%이상 향상시키는 것으로 나타났다. 3. 유지방 함량 23.80%인 control 치즈의 cholesterol 함량은 81.47mg/100g이었고, 균질압력 1200psi(91kg/$cm^2$)에 $\beta$-cyclodextrin 2%를 첨가한 cheese에서는 cholesterol 함량이 20.15mg/100g으로 cholesterol 제거율이 75.27%로 가장 높게 나타났다. 4. Meltability는 균질압력 1200psi(91kg/$cm^2$)에 $\beta$-cyclodextrin 1과 2%로 처리한 치즈에서 2.25cm(control 3.34cm)로 가장 낮았으며,