Abstract
CBR (Case-Based Reasoning) is a technique to infer the relationships between existing data and case data, and the method to calculate similarity and Euclidean distance is mostly frequently being used. However, since those methods compare all the existing and case data, it also has a demerit that it takes much time for data search and filtering. Therefore, to solve this problem, various researches have been conducted. This paper suggests the method of SE(Speed Euclidean-distance) calculation that utilizes the patterns discovered in the existing process of computing similarity and Euclidean distance. Because SE calculation applies the patterns and weight found during inputting new cases and enables fast data extraction and short operation time, it can enhance computing speed for temporal or spatial restrictions and eliminate unnecessary computing operation. Through this experiment, it has been found that the proposed method improves performance in various computer environments or processing rate more efficiently than the existing method that extracts data using similarity or Euclidean method does.
사례기반추론(CBR:Case-Based Reasoning)은 기존 데이터와 사례 데이터들의 관계성을 추론하는 기법으로 유사도(Similarity)와 유클리디안(Euclidean) 거리 계산 방법이 가장 많이 사용되고 있다. 그러나 이 방법들은 기존 데이터와 사례 데이터를 모두 비교하기 때문에 데이터 검색과 필터링에 많은 시간이 소요되는 단점이 있다. 따라서 이를 해결하기 위한 다양한 연구들이 진행되고 있다. 본 논문에서는 기존의 유사도와 유클리디안 계산과정에서 발견된 패턴을 활용한 SE(Speed Euclidean-distance) 계산방법을 제안한다. SE 계산방법은 새로운 사례입력에 발견된 패턴과 가중치를 적용하여 빠른 데이터 추출과 수행시간 단축으로 시간적 공간적 제약사항에 대한 연산 속도를 향상시키고 불필요한 연산 수행을 배제하는 것이다. 실험을 통해 유사도나 유클리디안 방법으로 데이터를 추출하는 기존의 방법보다 제안하는 방법이 다양한 컴퓨터 환경과 처리 속도에서 성능이 향상됨을 확인할 수 있었다.