• Title/Summary/Keyword: Spatial-Temporal Data Mining

Search Result 36, Processing Time 0.025 seconds

Location Generalization Method of Moving Object using $R^*$-Tree and Grid ($R^*$-Tree와 Grid를 이용한 이동 객체의 위치 일반화 기법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.231-242
    • /
    • 2007
  • The existing pattern mining methods[1,2,3,4,5,6,11,12,13] do not use location generalization method on the set of location history data of moving object, but even so they simply do extract only frequent patterns which have no spatio-temporal constraint in moving patterns on specific space. Therefore, it is difficult for those methods to apply to frequent pattern mining which has spatio-temporal constraint such as optimal moving or scheduling paths among the specific points. And also, those methods are required more large memory space due to using pattern tree on memory for reducing repeated scan database. Therefore, more effective pattern mining technique is required for solving these problems. In this paper, in order to develop more effective pattern mining technique, we propose new location generalization method that converts data of detailed level into meaningful spatial information for reducing the processing time for pattern mining of a massive history data set of moving object and space saving. The proposed method can lead the efficient spatial moving pattern mining of moving object using by creating moving sequences through generalizing the location attributes of moving object into 2D spatial area based on $R^*$-Tree and Area Grid Hash Table(AGHT) in preprocessing stage of pattern mining.

  • PDF

Spatio-temporal Load Analysis Model for Power Facilities using Meter Reading Data (검침데이터를 이용한 전력설비 시공간 부하분석모델)

  • Shin, Jin-Ho;Kim, Young-Il;Yi, Bong-Jae;Yang, Il-Kwon;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1910-1915
    • /
    • 2008
  • The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).

Labeling Big Spatial Data: A Case Study of New York Taxi Limousine Dataset

  • AlBatati, Fawaz;Alarabi, Louai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.207-212
    • /
    • 2021
  • Clustering Unlabeled Spatial-datasets to convert them to Labeled Spatial-datasets is a challenging task specially for geographical information systems. In this research study we investigated the NYC Taxi Limousine Commission dataset and discover that all of the spatial-temporal trajectory are unlabeled Spatial-datasets, which is in this case it is not suitable for any data mining tasks, such as classification and regression. Therefore, it is necessary to convert unlabeled Spatial-datasets into labeled Spatial-datasets. In this research study we are going to use the Clustering Technique to do this task for all the Trajectory datasets. A key difficulty for applying machine learning classification algorithms for many applications is that they require a lot of labeled datasets. Labeling a Big-data in many cases is a costly process. In this paper, we show the effectiveness of utilizing a Clustering Technique for labeling spatial data that leads to a high-accuracy classifier.

Semantic Trajectory Based Behavior Generation for Groups Identification

  • Cao, Yang;Cai, Zhi;Xue, Fei;Li, Tong;Ding, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5782-5799
    • /
    • 2018
  • With the development of GPS and the popularity of mobile devices with positioning capability, collecting massive amounts of trajectory data is feasible and easy. The daily trajectories of moving objects convey a concise overview of their behaviors. Different social roles have different trajectory patterns. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit life patterns. However, most existing daily trajectories mining studies mainly focus on the spatial and temporal analysis of raw trajectory data but missing the essential semantic information or behaviors. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient approach for stay regions extraction from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on spatial and temporal similarity factor. Furthermore, a pruning strategy is proposed to lighten tedious calculations and comparisons. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.

Optimal Moving Pattern Mining using Frequency of Sequence and Weights (시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사)

  • Lee, Yon-Sik;Park, Sung-Sook
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.79-93
    • /
    • 2009
  • For developing the location based service which is individualized and specialized according to the characteristic of the users, the spatio-temporal pattern mining for extracting the meaningful and useful patterns among the various patterns of the mobile object on the spatio-temporal area is needed. Thus, in this paper, as the practical application toward the development of the location based service in which it is able to apply to the real life through the pattern mining from the huge historical data of mobile object, we are proposed STOMP(using Frequency of sequence and Weight) that is the new mining method for extracting the patterns with spatial and temporal constraint based on the problems of mining the optimal moving pattern which are defined in STOMP(F)[25]. Proposed method is the pattern mining method compositively using weighted value(weights) (a distance, the time, a cost, and etc) for our previous research(STOMP(F)[25]) that it uses only the pattern frequent occurrence. As to, it is the method determining the moving pattern in which the pattern frequent occurrence is above special threshold and the weight is most a little bit required among moving patterns of the object as the optimal path. And also, it can search the optimal path more accurate and faster than existing methods($A^*$, Dijkstra algorithm) or with only using pattern frequent occurrence due to less accesses to nodes by using the heuristic moving history.

  • PDF

Trajectory Search Algorithm for Spatio-temporal Similarity of Moving Objects on Road Network (도로 네트워크에서 이동 객체를 위한 시공간 유사 궤적 검색 알고리즘)

  • Kim, Young-Chang;Vista, Rabindra;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.59-77
    • /
    • 2007
  • Advances in mobile techknowledges and supporting techniques require an effective representation and analysis of moving objects. Similarity search of moving object trajectories is an active research area in data mining. In this paper, we propose a trajectory search algorithm for spatio-temporal similarity of moving objects on road network. For this, we define spatio-temporal distance between two trajectories of moving objects on road networks, and propose a new method to measure spatio-temporal similarity based on the real road network distance. In addition, we propose a similar trajectory search algorithm that retrieves spatio-temporal similar trajectories in the road network. The algorithm uses a signature file in order to retrieve candidate trajectories efficiently. Finally, we provide performance analysis to show the efficiency of the proposed algorithm.

  • PDF

An Efficient Algorithm for Spatio-Temporal Moving Pattern Extraction (시공간 이동 패턴 추출을 위한 효율적인 알고리즘)

  • Park, Ji-Woong;Kim, Dong-Oh;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.2 s.17
    • /
    • pp.39-52
    • /
    • 2006
  • With the recent the use of spatio-temporal data mining which can extract various knowledge such as movement patterns of moving objects in history data of moving object gets increasing. However, the existing movement pattern extraction methods create lots of candidate movement patterns when the minimum support is low. Therefore, in this paper, we suggest the STMPE(Spatio-Temporal Movement Pattern Extraction) algorithm in order to efficiently extract movement patterns of moving objects from the large capacity of spatio-temporal data. The STMPE algorithm generalizes spatio-temporal and minimizes the use of memory. Because it produces and keeps short-term movement patterns, the frequency of database scan can be minimized. The STMPE algorithm shows more excellent performance than other movement pattern extraction algorithms with time information when the minimum support decreases, the number of moving objects increases, and the number of time division increases.

  • PDF

gCRM and Spatial Data Mining (gCRM과 공간데이타마이닝)

  • Hwang, Jung-Rae;Li, Ki-Joune
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.38-44
    • /
    • 2002
  • 고객관계관리(CRM)나 마케팅과 같은 경영방식에서도 대용량의 공간 데이터베이스를 사용하는 지리정보시스템(GIS)과 같은 응용분야를 접목하고 있다. gCRM은 지리정보시스템과 고객관계관리를 결합한 것으로, 이러한 실정을 단적으로 보여 주고 있는 경영방식이다. gCRM은 대용량의 데이터베이스로부터 관심 있는 분야를 찾아내고 분석하게 된다. 그러기 위해서는 데이터마이닝이라는 기술이 필요하다. 하지만, gCRM은 일반적인 데이터베이스뿐만 아니라 공간 데이터베이스 역시 많이 사용되어진다. 이러한 공간데이터베이스로부터 관심 있는 부분이나 관계 그리고 특성 등을 찾아내기 위해서는 공간데이타마이닝이 요구된다. 본 논문에서는 gCRM 솔루션들의 기능을 중심으로 다양한 공간데이타마이닝 기법과 어떠한 관계가 있는지를 살펴봄으로써 gCRM과 공간데이타마이닝이 접목할 수 있는 부분에 대하여 정리하였다.

  • PDF

Prediction of Consumer Propensity to Purchase Using Geo-Lifestyle Clustering and Spatiotemporal Data Cube in GIS-Postal Marketing System (GIS-우편 마케팅 시스템에서 Geo-Lifestyle 군집화 및 시공간 데이터 큐브를 이용한 구매.소비 성향 예측)

  • Lee, Heon-Gyu;Choi, Yong-Hoon;Jung, Hoon;Park, Jong-Heung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.4
    • /
    • pp.74-84
    • /
    • 2009
  • GIS based new postal marketing method is presented in this paper with spatiotemporal mining to cope with domestic mail volume decline and to strengthening competitiveness of postal business. Market segmentation technique for socialogy of population and spatiotemporal prediction of consumer propensity to purchase through spatiotemporal multi-dimensional analysis are suggested to provide meaningful and accurate marketing information with customers. Internal postal acceptance & external statistical data of local districts in the Seoul Metropolis are used for the evaluation of geo-lifestyle clustering and spatiotemporal cube mining. Successfully optimal 14 maketing clusters and spatiotemporal patterns are extracted for the prediction of consumer propensity to purchase.

  • PDF

Location Generalization of Moving Objects for the Extraction of Significant Patterns (의미 패턴 추출을 위한 이동 객체의 위치 일반화)

  • Lee, Yon-Sik;Ko, Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2011
  • In order to provide the optimal location based services such as the optimal moving path search or the scheduling pattern prediction, the extraction of significant moving pattern which is considered the temporal and spatial properties of the location-based historical data of the moving objects is essential. In this paper, for the extraction of significant moving pattern we propose the location generalization method which translates the location attributes of moving object into the spatial scope information based on $R^*$-tree for more efficient patterning the continuous changes of the location of moving objects and for indexing to the 2-dimensional spatial scope. The proposed method generates the moving sequences which is satisfied the constraints of the time interval between the spatial scopes using the generalized spatial data, and extracts the significant moving patterns using them. And it can be an efficient method for the temporal pattern mining or the analysis of moving transition of the moving objects to provide the optimal location based services.