급격한 산업화와 도시화로 인해 해양 오염이 심각해지고 있으며, 이러한 해양 오염을 실효적으로 관리하기 위해 수질평가지수(Water Quality Index, WQI)를 마련하여 활용하고 있다. 하지만 수질평가지수는 다소 복잡한 계산과정으로 인한 정보의 손실, 기준값 변동, 실무자의 계산오류, 통계적 오류 등의 불확실성(uncertainty)을 내포하고 있다. 이에 따라 국내·외에서 인공지능 기법을 활용하여 수질평가지수를 예측하기 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 해양환경측정망 자료(2000 ~ 2020년)를 활용하여 우리나라 전 해역 즉, 5개의 생태구에 대한 WQI를 추정할 수 있는 가장 적합한 인공지능기법을 도출하기 위해 총 6가지의 기법(RF, XGBoost, KNN, Ext, SVM, LR)을 실험하였다. 그 결과, Random Forest 기법이 다른 기법에 비해 가장 우수한 성능을 보였다. Random Forest 기법의 WQI 점수 예측값과 실제값의 잔차 분석 결과, 모든 생태구에서 시간적 및 공간적 예측 성능이 우수한 것으로 나타났다. 이를 통해 본 연구에서 개발한 Random Forest 기법은 높은 정확도를 바탕으로 우리나라 전해역에 대한 WQI를 예측 가능할 것으로 사료된다.
생육환경의 이질성은 수목의 개체군 구조와 동태, 군락의 구성 및 종다양성 유지에 중요한 역할을 한다. 이 연구는 미세지형이 활엽수-잣나무 혼효림에서의 산겨릅나무 개체군의 공간분포에 미치는 영향과 공간분포 양상을 검토하기 위하여 9 ha의 영구 표본구에 있는 유묘, 치수, 살아있는 성숙목과 고사목에 대하여 공간분포 특성을 분석하였다. 그 결과 사면경사에 있어서 산겨릅나무는 비교적 완만한 경사를 선호하였다. 사면 방향별 유묘의 밀도는 차이가 없었고, 치수, 살아 있는 성숙목, 고사목의 밀도는 서향, 동남향에서 높게 나타났다. 살아있는 성숙목의 경우, 150 m 이내의 모든 척도에서 집락분포를 하고 있으며, 척도 30 m에서 최고값을 보였고, 고사목은 111 m 이내에서는 집락분포를 하고. 척도 72 m에서 최고값을 보이고 있으며, 111 m보다 큰 척도에서는 무작위분포를 하고 있었다(P < 0.01). 산겨릅나무의 생육단계별 발생 유사성에 있어서 유묘는 치수와 고도의 정의 상관관계, 치수는 살아 있는 성숙목과 고도의 정의 상관관계, 살아 있는 성숙목은 죽은 성숙목과 고도의 정의 상관관계가 있어 (P < 0.01), 생활사 하위 단계의 발생은 상위단계와 고도의 정의 상관관계가 있음을 알 수 있었다.
최근 북극은 매년 영구 동토층이 녹아 눈으로 덮인 땅이 드러나고 있어 해당 지역 관리를 위한 공간정보가 필요하다. 한국의 국토지리정보원(NGII)은 극지방의 공간정보를 구축하여 극지공간정보 서비스를 제공하고 있으나, 식생 정보는 제공되지 않고 있으므로 식생 공간정보 구축을 위한 추가적인 연구가 필요하다. 본 연구에서는 북극 스발바르제도의 뉘올레순 지역에 대한 식생 분류를 수행하기 위해 다중 시기의 Sentinel-2 영상을 사용하였다. 전처리 단계에서는 다중 시기 Sentinel-2 영상으로부터 10개 밴드와 6가지 정규 지수식을 생성하였다. 영상 분류는 8개 속성에 대한 토지피복분류를 통해 전체 식생 영역을 추출하는 과정과 전체 식생 영역 내에서 다시 세분류를 수행하는 과정으로 이루어졌다. 영상 분류 알고리즘은 OOB(Out-Of-Bag)를 통해 정확도 평가 및 변수 중요도를 산정할 수 있는 랜덤포레스트를 사용하였다. 전체 정확도는 다시기 영상이 사용되었을 경우와 식생 지수가 추가되었을 경우의 이점을 확인하기 위해 사용된 영상 수에 따라 각각 정확도를 산정하였다. 단일시기의 Sentinel-2 영상은 전체 정확도가 77%였으나, 7개의 다중 시기 Sentinel-2 영상을 기반으로 학습하였을 때, 81%로 향상되었다. 또한, 식생 지수가 추가로 사용된 학습에서 전체 정확도가 약 83%로 향상되었다. 식생 분류 시 변수 중요도는 적색, 녹색, 단파적외선-1 밴드가 가장 높은 변수로 선정되었다. 본 연구는 극지방의 식생에 대한 분류를 수행할 시 입력특성을 최적화하는 기초 연구로 활용될 수 있을 것으로 판단된다.
Land surface temperature is essential for monitoring abnormal climate phenomena such as UHI (Urban Heat Islands), and for modeling weather patterns. However, the quality of surface temperature obtained from the optical space imagery is affected by many factors such as, revisit period of the satellite, instance of capture, spatial resolution, and cloud coverage. Landsat 8 imagery, often used to obtain surface temperatures, has a high resolution of 30 meters (100 meters rearranged to 30 meters) and a revisit frequency of 16 days. On the contrary, MODIS imagery can be acquired daily with a spatial resolution of about 1 kilometer. Many past attempts have been made using both Landsat and MODIS imagery to complement each other to produce an imagery of improved temporal and spatial resolution. This paper applied machine learning methods and performed downscaling which can obtain daily based land surface temperature imagery of 30 meters.
Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.
This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
본 연구는 오대산의 전나무 노령임분(老齡林分)내 숲틈에서 발생된 1~2년생 전나무 치수(416개체)의 공간적 유전구조를 파악하기 위하여 ISSR(inter-simple sequence repeats) 표지자 분석을 실시하였다. 대상 숲틈의 크기는 $1,500m^2(50m{\times}30m)$로 전나무이외 수종의 상층임관 일부와 중 하층임관이 제거되고, 전나무 성목은 입목고사(立木枯死) 혹은 수세가 불량한 상태이다. 31개의 다형성 ISSR 표지자를 이용한 공간의 자기상관성분석에서는 15.6m이내에 유전적 동질성을 갖으며, 이후 31.2m까지는 임의분포를 나타내었다. 숲틈내 전나무 성목의 평균수고(21.1m), 종자의 산포범위, 성목간 평균거리(23.7m)를 고려할 때, 전나무 치수의 유전적 군락 크기(genetic patch size)는 모수의 분포밀도에 따라서 제한받는 것으로 추정된다. 치수 산포에 대한 방향성 파악을 위하여 유전적 거리를 이용한 다차원척도법의 형상좌표를 '유전적 형상(genetic configuration)'으로 설정하고, 이를 이용한 분산도분석을 실시하였다. 지향성 분산도에서는 동서방향으로 거리의 증가에 따라 치수간 유전적 동질성이 계속 감소하는 것으로 나타났다. 오대산 전나무림의 막대한 종자생산량과 조사구내 치수 발생수의 임의분포와 임상(林床)의 균일성을 고려하면, 이러한 전나무 치수의 유전적 방향은 모수간 충실율 차이나 국소환경보다는 종자 산포의 방향성에 따른 것으로 생각된다.
지상 오존은 차량 및 산업 현장에서 배출된 질소화합물(Nitrogen oxides; NOx)과 휘발성 유기화합물(Volatile Organic Compounds; VOCs)의 광화학 반응을 통해 생성되어 식생 및 인체에 악영향을 끼친다. 국내에서는 실시간 오존 모니터링을 수행하고 있지만 관측소 기반으로, 미관측 지역의 공간 분포 분석에 어려움이 있다. 본 연구에서는 스태킹 앙상블 기법을 활용하여 매시간 남한 지역의 지상 오존 농도를 1.5km의 공간해상도로 공간내삽하였고, 5-fold 교차검증을 수행하였다. 스태킹 앙상블의 베이스 모델로는 코크리깅(Cokriging), 다중 선형 회귀(Multi-Linear Regression; MLR), 랜덤 포레스트(Random Forest; RF), 서포트 벡터 회귀(Support Vector Regression; SVR)를 사용하였다. 각 모델의 정확도 비교 평가 결과, 스태킹 앙상블 모델이 연구 기간 내 시간별 평균 R 및 RMSE이 0.76, 0.0065ppm으로 가장 높은 성능을 보여주었다. 스태킹 앙상블 모델의 지상 오존 농도 지도는 복잡한 지형 및 도시화 변수의 특징이 잘 드러나며 더 넓은 농도 범위를 보여주었다. 개발된 모델은 매시간 공간적으로 연속적인 공간 지도를 산출할 수 있을 뿐만 아니라 8시간 평균치 산출 및 시계열 분석에 있어서도 활용 가능성이 클 것으로 기대된다.
Background: Knowledge of the spatial trends of plant invasions in different habitats is essential for a better understanding of the process of these invasions. We examined the variation in invasive alien plant species (IAS) richness and composition at two spatial scales defined by elevation and habitat types (roadside, forest, and cultivated lands) in the Makawanpur district of Nepal. Following an elevation gradient ranging from 500 to 2,400 m asl along a mountain road, plant species cover was recorded within sample plots of size 10 m × 5 m. Systematic random sampling was adopted in every 100 m elevation intervals on three habitat types. Results: Altogether 18 invasive alien plants belonging to eight families were recorded within 60 plots, of which 14 species (representing 80%) were from tropical North and South America. The most common plants by their frequency were Ageratina adenophora, Chromolaena odorata, Bidens pilosa, Lantana camara, and Parthenium hysterophorus. We found a significant relationship between species composition and elevation in the study area. Low-elevation regions had a higher number of alien species as compared to high-elevation regions within different habitat types. Conclusions: The species richness and density of IAS were higher in the road site followed by the cultivated land and forest sites. This pattern occurred throughout the elevation range and habitats. IAS were found mostly in the open land with high sunlight availability. Information from such scientific assessment of invasive alien plants will assist in developing appropriate management plans in the Makawanpur district.
초분광 영상(hyperspectral imagery)은 주성분분석이나 최소잡음비율 등을 이용하여 자료의 차원과 잡음을 감소시켜 토지피복분류에 사용되는 것이 일반적이다. 최근에는 분광정보와 공간적 특성을 가진 다양한 입력 자료를 이용한 감독분류에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 초분광 영상을 이용한 토지피복분류를 위해 principle component(PC) 밴드와 normalized difference vegetation index(NDVI) 자료를 감독분류의 입력자료로 활용하였다. NDVI 자료는 초분광 영상에서 추출된 PC 밴드가 포함하고 있지 않는 추가적인 정보를 활용하여 식생지역에 대한 토지피복분류 정확도를 높이고자 사용하였으며, morphological filter를 통해 각 밴드의 extended attribute profiles(EAP)를 제작하여 분류를 위한 입력 자료로 사용하였다. 감독분류기법은 random forest 알고리즘을 이용하였으며, EAP를 기반으로 다양한 입력 자료의 적용에 따른 분류정확도를 비교하고자 하였다. 연구지역으로는 두 대상지를 선정하였으며, 영상 내에서 취득한 참조자료를 이용하여 정량적인 평가를 수행하였다. 본 연구에서 제안한 기법의 분류정확도는 85.72%와 91.14%로 다른 입력 자료들을 이용한 경우와 비교하여 가장 높은 분류정확도를 나타냈다. 향후, 초분광 영상을 이용한 토지피복분류의 정확도를 높이기 위한 분류 알고리즘 개발과 대상지역 특성에 맞는 추가 입력자료 개발에 관한 연구가 필요할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.