Spatial Pattern of Acer tegmentosum in the Mixed Broadleaved-Korean Pine Forest of Xiaoxing'an Mountains, China

중국 소흥안령 활엽수-잣나무 혼효림에서의 산겨릅나무의 공간분포 양상

  • Jin, Guangze (School of Forestry Northeast Forestry University) ;
  • Li, Ru (School of Forestry Northeast Forestry University) ;
  • Li, Zhihong (School of Forestry Northeast Forestry University) ;
  • Kim, Ji Hong (College of Forest and Environmental Sciences, Kangwon National Univeresity)
  • 김광택 (중국 동북임업대학 임학원) ;
  • 려여 (중국 동북임업대학 임학원) ;
  • 이지굉 (중국 동북임업대학 임학원) ;
  • 김지홍 (강원대학교 산림환경과학대학)
  • Received : 2007.09.27
  • Accepted : 2007.10.16
  • Published : 2007.12.31

Abstract

The heterogeneity of forest environment plays an important role in the structure and dynamics of tree population, the composition of forest community, and the maintenance of species diversity. Based upon the research data of the nine hectare permanent plot in the typical mixed broadleaved-Korean pine forest, this study was conducted to analyze the characteristics of spatial pattern of Acer tegmentosum population for seedlings, saplings, and living and dead trees so as to evaluate the effect of micro-topography on spatial pattern of the species. The results noted that A. tegmentosum preferred to gentle slopes. There was no difference in density of seedlings by the variation of aspect, but the density of saplings, and living and dead trees was high on the western and southeastern slopes. Living trees of A. tegmentosum showed the clumped pattern for all scales within 150 m and highest at the scale of 30 m. Dead stems of the species indicated the clumped pattern within 111 m, highest at the scale of 72 m, and random pattern beyond the scale of 111 m (P < 0.01 ). The similarity of occurrence by developmental stages of A. tegmentosum showed that seedlings vs. saplings, saplings vs. living trees, and living trees vs. dead stems had highly positive correlation to each other, respectively (P < 0.01 ), indicating that the occurrence of previous developmental stages was positively correlated to following stages.

생육환경의 이질성은 수목의 개체군 구조와 동태, 군락의 구성 및 종다양성 유지에 중요한 역할을 한다. 이 연구는 미세지형이 활엽수-잣나무 혼효림에서의 산겨릅나무 개체군의 공간분포에 미치는 영향과 공간분포 양상을 검토하기 위하여 9 ha의 영구 표본구에 있는 유묘, 치수, 살아있는 성숙목과 고사목에 대하여 공간분포 특성을 분석하였다. 그 결과 사면경사에 있어서 산겨릅나무는 비교적 완만한 경사를 선호하였다. 사면 방향별 유묘의 밀도는 차이가 없었고, 치수, 살아 있는 성숙목, 고사목의 밀도는 서향, 동남향에서 높게 나타났다. 살아있는 성숙목의 경우, 150 m 이내의 모든 척도에서 집락분포를 하고 있으며, 척도 30 m에서 최고값을 보였고, 고사목은 111 m 이내에서는 집락분포를 하고. 척도 72 m에서 최고값을 보이고 있으며, 111 m보다 큰 척도에서는 무작위분포를 하고 있었다(P < 0.01). 산겨릅나무의 생육단계별 발생 유사성에 있어서 유묘는 치수와 고도의 정의 상관관계, 치수는 살아 있는 성숙목과 고도의 정의 상관관계, 살아 있는 성숙목은 죽은 성숙목과 고도의 정의 상관관계가 있어 (P < 0.01), 생활사 하위 단계의 발생은 상위단계와 고도의 정의 상관관계가 있음을 알 수 있었다.

Keywords

Acknowledgement

Supported by : Scientific Research Foundation

References

  1. 金光澤, 唐艶,金知洪. 2002. TWINSPAN에 의해 分類된 黙鳳山 帯 天然潤葉樹林의 群落構造 解析. 韓國林學會誌 91(4): 523-534
  2. 何立偉, 1987.假色 楷 花楷昕生律及經營措施的探討.吉林林業科技 2: 21-22
  3. 于振良, 于責端, 王秋鳳, 趙士司, 延曉冬. 2001. 長白山紅. 松濶葉林林防特徵及對樹種更新的影響. 資源科學 23(6): 64-68
  4. 剛, 梁秀英, 張旭東, 占慶, 周永斌, 尹若波. 1999. 長白山紅松濶葉林主要樹種高度生態位的先. 應用生態學報 10(3), 262-264
  5. 周以良, 董世林, 紹全. 1986. 黒龍江樹木誌. 黒龍江科學技術山版壮. 哈爾濱, 中国. pp.585
  6. Hubbell, S.P., Foster, R.B. O'Brien, S.T., Harms, K.E., Condit, R., Wechsler, B., Wright, S.J., and Loo de Lao, S. 1999. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283: 554-557 https://doi.org/10.1126/science.283.5401.554
  7. Jin, G.Z., Tian, Y.Y., Zhao, F.X. and Kim, J.H. 2007. The pattern of natural regeneration by gap size in the broadleaved- Korean pine mixed forest of Xiaoxingan mountains, China. Journal of Korean Forest Society 96(2): 227-234
  8. Jin, G.Z., Xie, X.C., Tian, Y.Y. and Kim, J.H. 2006. The pattern of seed rain in the broadleaved-Korean pine mixed forest of Xiaoxingan mountains, China. Journal of Korean Forest Society 95(5): 621-627
  9. Kneeshaw, D.D., Bergeron, Y. 1998. Canopy gap characteristics and tree replacement in the southeastern boreal forest. Ecology 79(3): 783-794 https://doi.org/10.1890/0012-9658(1998)079[0783:CGCATR]2.0.CO;2
  10. Moeur, M. 1993. Characterizing spatial patterns of trees using stem-mapped data. Forest Science 39(4): 756-775
  11. Moeur, M. 1997. Spatial models of competition and gap dynamics in old-growth Tsuga heterophylla/Thuja plicata forest. Forest Ecology and Management 94: 175-186 https://doi.org/10.1016/S0378-1127(96)03976-X
  12. North, M., Chen, J., Oakley, B., Song, B., Rudnicki, M., Gray, A., and Innes, J. 2004. Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed-conifer forests. Forest Science 50 (3): 299-311
  13. Ripley, B.D. 1976. The second-order analysis of station.. ary point processes. Journal of Applied Probability 13(2): 255 -266 https://doi.org/10.2307/3212829
  14. Ripley, B.D. 1977. Modelling spatial patterns. Journal of the Royal Statistical Society (B) 39: 172-192
  15. Ripley, B.D. 1979. Test of randomness for spatial point patterns. Journal of the Royal Statistical Society (B) 41: 368-374
  16. Ripley, B.D. 1981. Spatial Statistics. John Wiley & Sons. NewYork: Wiley pp. 252
  17. Runkle, J.R. 1985. Disturbance regimes in temperate forest. pp. 17-33. In: S.T.A. Pickett and P.S. White ed., The Ecology of Nature Disturbance and Patch Dynamics. Aca demic Press. Orlando, U.S.A
  18. Schnitzer, S.A, and Carson, W.P. 2001. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82(4): 913-919 https://doi.org/10.1890/0012-9658(2001)082[0913:TGATMO]2.0.CO;2
  19. Tomppo, E. 1986. Models and methods for analysing spatial patterns of trees. In: Communicationes Instituti Forestalis Fenniae, vol.138, The Finnish Forest Research Institute, Helsinki, Finland, pp. 65