• Title/Summary/Keyword: Spatial images

Search Result 2,502, Processing Time 0.024 seconds

Analysis of Land-cover Types Using Multistage Hierarchical flustering Image Classification (다단계 계층군집 영상분류법을 이용한 토지 피복 분석)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.135-147
    • /
    • 2003
  • This study used the multistage hierarchical clustering image classification to analyze the satellite images for the land-cover types of an area in the Korean peninsula. The multistage algorithm consists of two stages. The first stage performs region-growing segmentation by employing a hierarchical clustering procedure with the restriction that pixels in a cluster must be spatially contiguous, and finally the whole image space is segmented into sub-regions where adjacent regions have different physical properties. Without spatial constraints for merging, the second stage clusters the segments resulting from the previous stage. The image classification of hierarchical clustering, which merges step-by step two small groups into one large one based on the hierarchical structure of digital imagery, generates a hierarchical tree of the relation between the classified regions. The experimental results show that the hierarchical tree has the detailed information on the hierarchical structure of land-use and more detailed spectral information is required for the correct analysis of land-cover types.

Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 5 River Basins in South Korea (NOAA AVHRR 영상 및 GIS 기법을 이용한 국내 5대강 유역의 융설 매개변수 추출)

  • Shin, Hyung-Jin;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.119-124
    • /
    • 2007
  • The few observed data related snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) building for 5 major watersheds in South Korea. Especially SDC is important parameter of snowmelt model.

Extraction of Ground Control Points from TerraSAR-X Data (TerraSAR-X를 이용한 지상기준점 추출)

  • Park, Jeong-Won;Hong, Sang-Hoon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.299-307
    • /
    • 2008
  • It is possible to extract qualified ground control points (GCPs) from SAR data itself without published maps. TerraSAR-X data that are one of highest spatial resolution among civilian SAR systems is now available. In this study, a sophisticated method for GCP extraction from TerraSAR-X data was tested and the quality of the extracted GCPs was evaluated. Mean values of the distance errors were 0.11m and -3.96 m with standard deviations of 6.52 m and 5.11 m in easting and northing, respectively. The result is one of the best among GCPs possibly extracted from any civilian remote sensing systems. The extracted GCPs were used for geo-rectification of IKONOS image. The method used in this study can be applied to KOMPSAT-5 for geo-rectification of high-resolution optic images acquired by KOMPSAT-2 or follow-up missions.

Reconstruction and Change Analysis for Temporal Series of Remotely-sensed Data (연속 원격탐사 영상자료의 재구축과 변화 탐지)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 2002
  • Multitemporal analysis with remotely sensed data is complicated by numerous intervening factors, including atmospheric attenuation and occurrence of clouds that obscure the relationship between ground and satellite observed spectral measurements. Using an adaptive reconstruction system, dynamic compositing approach was developed to recover missing/bad observations. The reconstruction method incorporates temporal variation in physical properties of targets and anisotropic spatial optical properties into image processing. The adaptive system performs the dynamic compositing by obtaining a composite image as a weighted sum of the observed value and the value predicted according to local temporal trend. The proposed system was applied to the sequence of NDVI images of AVHRR observed on the Korean Peninsula from 1999 year to 2000 year. The experiment shows that the reconstructed series can be used as an estimated series with complete data for the observations including bad/missing values. Additionally, the gradient image, which represents the amount of temporal change at the corresponding time, was generated by the proposed system. It shows more clearly temporal variation than the data image series.

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young;Sudduth, Kenneth-A.;Kitchen, Newell-R.;Fraisse, Clyde-W.;Palm, Harlan-L.;Wiebold, William-J.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.175-188
    • /
    • 2004
  • The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.

A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal (그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구)

  • Yun Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • High-resolution aerial color image offers great possibilities for geometric and semantic information for spatial data generation. However, shadow casts by buildings and trees in high-density urban areas obscure much of the information in the image giving rise to potentially inaccurate classification and inexact feature extraction. Though many researches have been implemented for solving shadow casts, few studies have been carried out about the extraction of features hindered by shadows from aerial color images in urban areas. This paper presents a asphalt road boundary extraction technique that combines information from aerial color image and LIDAR (LIght Detection And Ranging) data. The following steps have been performed to remove shadow effects and to extract road boundary from the image. First, the shadow regions of the aerial color image are precisely located using LEAR DSM (Digital Surface Model) and solar positions. Second, shadow regions assumed as road are corrected by shadow path reconstruction algorithms. After that, asphalt road boundary extraction is implemented by segmentation and edge detection. Finally, asphalt road boundary lines are extracted as vector data by vectorization technique. The experimental results showed that this approach was effective and great potential advantages.

Analysis and Improvement of Interior Orientation Accuracy of KOMPSAT-2 PANchromatic Bands (KOMPSAT-2 영상 PAN밴드의 내부표정 정확도 분석 및 개선방안 연구)

  • Kim, Tae-Jung;Jeong, Jae-Hoon;Kim, Deok-In
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.439-449
    • /
    • 2010
  • This paper reports experiments and analysis work done to find out the cause of Y parallex for stereo pairs of KOMPSAT-2 images and means to improve the Y parallex problem. We could conclude that the Y parallex problem was caused by resampling errors of KOMPSAT-2 PANchromatic bands, induced by the process of warping PANchromatic band with reference to multispectral bands. We could also conclude that a rigorous warping process could improve resampling of KOMPSAT-2 PANchromatic band and remove the Y parallex problem significantly. We also confirmed that a rigorous warping process could also remove blocky brightness patterns present on KOMPSAT-2 PANchromatic band. Therefore, by implementing more rigorous warping process within KOMPSAT-2 scene generation procedures, KOMPSAT-2 geometric and radiometric quality will be improved.

Detection of Land Subsidence and its Relationship with Land Cover Types using ESA Sentinel Satellites data: A case study of Quetta valley, Pakistan

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.148-148
    • /
    • 2018
  • Land subsidence caused by excessive groundwater pumping is a serious hydro-geological hazard. The spatial variability in land use, unbalanced groundwater extraction and aquifer characteristics are the key factors which make the problem more difficult to monitor using conventional methods. This study uses the European Space Agency (ESA) Sentinel satellites to investigate and monitor land subsidence varying with different land covers and groundwater use in the arid Quetta valley, Pakistan. The Persistent Scattering Differential Interferometry of Synthetic Aperture Radar (PS-DInSAR) method was used to develop 28 subsidence interferograms of the study area for the period between 16 Oct 2014 and 06 Oct 2016 using ESA's Sentinel-1 SAR data. The uncertainty of DInSAR result is first minimized by removing the dynamic effect caused by atmospheric factors and then filtered using the radar Amplitude Dispersion Index (ADI) to select only the stable pixels. Finally the subsidence maps were generated by spatially interpolating the land subsidence at the stable pixels, the comparison of DInSAR subsidence with GPS readings showed an R 2 of 0.94 and mean absolute error of $5.7{\pm}4.1mm$. The subsidence maps were also analysed for the effect of aquifer type and 4 land covers which were derived from Sentienl-2 multispectral images. The analysis show that during the two year period, the study area experienced highly non-linear land subsidence ranging from 10 to 280 mm. The subsidence at different land covers was significantly different from each other except between the urban and barren land. The barren land and seasonally cultivated area show minor to moderate subsidence while the orchard and urban area with high groundwater extraction rate showed excessive amount of land subsidence. Moreover, the land subsidence and groundwater drawdown was found to be linearly proportional to each other.

  • PDF

A Study on Comparison of Cardiac Ejection Fraction Values Measured in Myocardium SPECT and Cine MRI

  • Han, Jung-Seok;Dong, Kyung-Rae;Park, Yong-Soon;Chung, Woon-Kwan;Cho, Jae-Hwan;Cho, Young-Kuk
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.229-232
    • /
    • 2012
  • This study examined the correlation between MR cine and myocardium Single-photon emission computed tomography (SPECT) by comparing the measured cardiac ejection fractions. The usefulness of cardiac MRI was also evaluated. Ten patients (8 men, 2 women and average age of 58.6 years), who underwent a myocardium SPECT scan and cardiac cine MRI scan among patients who visited the hospital for the chief complaint of cardiac disorder from June 1, 2010 to February 10, 2011, were enrolled in this study. The cardiac ejection fraction was calculated from the images obtained in both scans. The data was used to examine the correlation. The regression equation the cardiac ejection fraction values of the 10 patients obtained in myocardium SPECT and MRI cine was Y = 1.12X-8.91 ($R^2$ = 0.78, significance of F = 0.001639, and confidence level of 95%). The results were significant when the cardiac ejection fraction obtained from MRI cine was compared with that obtained from myocardium SPECT. Overall, a cardiac examination using MRI enables an investigation of not only the ejection fraction but also the ED and ES volumes, stroke volume, wall thickness, and wall thickening in a higher spatial resolution despite the examination being conducted once. This examination is believed to be very useful for diagnosing patients with cardiac disease.

ELECTRICAL RESISTANCE IMAGING OF TWO-PHASE FLOW WITH A MESH GROUPING TECHNIQUE BASED ON PARTICLE SWARM OPTIMIZATION

  • Lee, Bo An;Kim, Bong Seok;Ko, Min Seok;Kim, Kyung Youn;Kim, Sin
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.109-116
    • /
    • 2014
  • An electrical resistance tomography (ERT) technique combining the particle swarm optimization (PSO) algorithm with the Gauss-Newton method is applied to the visualization of two-phase flows. In the ERT, the electrical conductivity distribution, namely the conductivity values of pixels (numerical meshes) comprising the domain in the context of a numerical image reconstruction algorithm, is estimated with the known injected currents through the electrodes attached on the domain boundary and the measured potentials on those electrodes. In spite of many favorable characteristics of ERT such as no radiation, low cost, and high temporal resolution compared to other tomography techniques, one of the major drawbacks of ERT is low spatial resolution due to the inherent ill-posedness of conventional image reconstruction algorithms. In fact, the number of known data is much less than that of the unknowns (meshes). Recalling that binary mixtures like two-phase flows consist of only two substances with distinct electrical conductivities, this work adopts the PSO algorithm for mesh grouping to reduce the number of unknowns. In order to verify the enhanced performance of the proposed method, several numerical tests are performed. The comparison between the proposed algorithm and conventional Gauss-Newton method shows significant improvements in the quality of reconstructed images.