• 제목/요약/키워드: Spatial fusion

검색결과 329건 처리시간 0.023초

KOMPSAT-2 전정색영상과 다중분광영상의 융합기법 비교평가 (Comparison of Image Fusion Methods to Merge KOMPSAT-2 Panchromatic and Multispectral Images)

  • 오관영;정형섭;이광재
    • 대한원격탐사학회지
    • /
    • 제28권1호
    • /
    • pp.39-54
    • /
    • 2012
  • 본 연구의 목적은 KOMPSAT-2 위성영상에 가장 일반적으로 적용 가능한 영상융합기법을 제시하는 것이다. 가장 널리 사용되는 영상융합기법인 HPF, modified IHS, pan-sharpened, wavelet을 지역적, 계절적 특성이 서로 다른 4장의 KOMPSAT-2 위성영상에 적용하였고, 각각의 융합결과를 공간적, 분광적으로 비교분석하였다. 영상융합기법의 품질평가는 시각적 분석과 정량적 분석을 병행하여 수행하였으며, 정량적 분석에는 spatial ERGAS, spectral ERGAS, SAM, Q4가 사용되었다. 종합적인 분석결과를 고려할 때, pan-sharpened가 색상정보와 공간정보의 균형적인 보존 측면에서 다른 융합기법들에 비해, 상대적으로 우수한 결과를 나타냈다. modified-IHS의 경우, 공간정보는 잘 보존하였지만 다소 큰 색상 왜곡이 발생되었고, HPF와 wavelet은 색상 왜곡은 적었지만, 공간정보의 왜곡이 발생하였다.

THE STUDY OF SPATIAL AND TEMPORAL VARIABILITY OF THE KUROSHIO EXTENSION USING REMOTE SENSING DATA WITH APPLICATION OF DATA-FUSION METHODS

  • Kim Woo-Jin;Park Gil- Yong;Lim Se-Han;OH Im-Sang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.434-436
    • /
    • 2005
  • Analysis method using remote sensing data is one of the effective ways to research a spatial and temporal variability of the mesoscale oceanic motions. During past several decades, many researchers have been getting comprehensive results using remote sensing data with application of data fusion methods in many parts of geo-science. For this study, we took the integration and fusion of several remote sensing data, which are different data resolution, timescale and characteristics, for improving accurate analysis of variation of the Kuroshio Extension. Furthermore, we might get advanced ways to understand the variability of the Kuroshio Extension, has close relation to the spatial and temporal variation of the Kuroshio and Oyashio Current.

  • PDF

Multi- Resolution MSS Image Fusion

  • Ghassemian, Hassan;Amidian, Asghar
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.648-650
    • /
    • 2003
  • Efficient multi-resolution image fusion aims to take advantage of the high spectral resolution of Landsat TM images and high spatial resolution of SPOT panchromatic images simultaneously. This paper presents a multi-resolution data fusion scheme, based on multirate image representation. Motivated by analytical results obtained from high-resolution multispectral image data analysis: the energy packing the spectral features are distributed in the lower frequency bands, and the spatial features, edges, are distributed in the higher frequency bands. This allows to spatially enhancing the multispectral images, by adding the high-resolution spatial features to them, by a multirate filtering procedure. The proposed method is compared with some conventional methods. Results show it preserves more spectral features with less spatial distortion.

  • PDF

Predictive Spatial Data Fusion Using Fuzzy Object Representation and Integration: Application to Landslide Hazard Assessment

  • Park, No-Wook;Chi, Kwang-Hoon;Chung, Chang-Jo;Kwon, Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제19권3호
    • /
    • pp.233-246
    • /
    • 2003
  • This paper presents a methodology to account for the partial or gradual changes of environmental phenomena in categorical map information for the fusion/integration of multiple spatial data. The fuzzy set based spatial data fusion scheme is applied in order to account for the fuzziness of boundaries in categorical information showing the partial or gradual environmental impacts. The fuzziness or uncertainty of boundary is represented as two kinds of fuzzy membership functions based on fuzzy object concept and the effects of them are quantitatively evaluated with the help of a cross validation procedure. A case study for landslide hazard assessment demonstrates the better performance of this scheme as compared to traditional crisp boundary representation.

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

Traffic Flow Prediction with Spatio-Temporal Information Fusion using Graph Neural Networks

  • Huijuan Ding;Giseop Noh
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.88-97
    • /
    • 2023
  • Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.

Developing Data Fusion Method for Indoor Space Modeling based on IndoorGML Core Module

  • 이지영;강혜영;김윤지
    • Spatial Information Research
    • /
    • 제22권2호
    • /
    • pp.31-44
    • /
    • 2014
  • 응용프로그램은 그 목적에 따라 최적의 데이터 모델을 활용하며, 이러한 응용프로그램을 위한 3차원 모델링 데이터는 선택된 데이터 모델을 기반으로 생성된다. 이러한 이유로, 동일한 공간의 지형지물을 표현하기 위해 다양한 데이터 셋이 존재한다. 그러한 중복된 데이터 셋은 공간정보 산업의 재정적 측면에서 문제를 가져올 뿐만 아니라, 시스템호환성과 데이터 비교가능성에서도 심각한 문제를 야기한다. 이러한 문제를 극복하기 위하여, 본 연구에서는 항목클래스내의 공간객체들 간의 위상적 관계를 이용하여 TRM (Topological Relation Method)이라고 하는 공간데이터융합 방법을 제안한다. TRM은 응용프로그램 수준에서 구현되는 공간데이터 융합방법으로써, 서로 다른 데이터 모델에 의해 생성된 기하데이터들을 응용시스템에서 어떠한 데이터 변환이나 교환 과정을 거치지 않고, 직접적으로 실내공간 위치기반 서비스에 제공하기 위해 사용된다. 이러한 위상관계는 IndoorGML의 기본 개념으로 정의 및 기술된다. TRM의 개념을 기술한 후, 3D GIS상에서 제안된 데이터 융합방법의 실험적 구현을 보여준다. 마지막으로서 본 연구의 한계와 향후 연구에 대해 정리한다.

영상의 분광 및 공간 특성을 이용한 고해상도 위성영상 융합 알고리즘 (Pan-Sharpening Algorithm of High-Spatial Resolution Satellite Image by Using Spectral and Spatial Characteristics)

  • 최재완;김용일
    • 대한공간정보학회지
    • /
    • 제18권2호
    • /
    • pp.79-86
    • /
    • 2010
  • 일반적으로, 영상 융합은 서로 다른 특징을 가지는 2개 이상의 영상을 이용하여 각 영상의 장점 및 특징을 모두 가지는 하나의 영상으로 재구성하는 것을 의미한다. 특히, 원격탐사 분야에서의 영상융합은 멀티스펙트럴 영상의 공간해상도를 향상시키는 것을 의미하며 이러한 이유로 인하여 Pan-sharpening 기술로도 불리어진다. 특히, 융합영상은 변화탐지, 영상 지도 제작, 도시 분석 등 다양한 분야에 적용 가능하기 때문에 중요성이 증대되고 있다. 그러나, 기존에 제안된 알고리즘들은 멀티스펙트럴 영상의 분광정보를 왜곡시키거나, 융합 영상의 공간해상도가 흑백영상의 공간해상도에 비하여 저하되는 문제를 지닌다. 이를 위해 본 논문에서는 멀티스펙트럴 영상의 분광 및 공간특성을 고려한 새로운 융합 방법론을 제안하였다. 본 알고리즘의 평가를 위해서 KOMPSAT-2, QuickBird 위성영상에 알고리즘을 적용을 하였으며, 기존의 영상융합 알고리즘에 비하여 공간적/분광적인 측면에서 모두 향상된 결과를 보임을 확인할 수 있었다.

퍼지 논리 융합과 반복적 Relaxation Labeling을 이용한 다중 센서 원격탐사 화상 분류 (Classification of Multi-sensor Remote Sensing Images Using Fuzzy Logic Fusion and Iterative Relaxation Labeling)

  • 박노욱;지광훈;권병두
    • 대한원격탐사학회지
    • /
    • 제20권4호
    • /
    • pp.275-288
    • /
    • 2004
  • 이 논문은 다중 센서 원격탐사 화상의 분류를 위해 퍼지 논리 융합과 결합된 relaxation labeling 방법을 제안하였다. 다중 센서 원격탐사 화상의 융합에는 퍼지 논리를, 분광정보와 공간정보의 융합에는 반복적인 relaxation labeling 방법을 적용하였다. 특히 반복적 relaxation labeling 방법은 공간정보의 이용에 따른 분류 화소의 변화양상을 얻을 수 있는 장점이 있다. 토지 피복의 감독 분류를 목적으로 광학 화상과 다중 주파수/편광 SAR 화상에 제안 기법을 적용한 결과, 다중 센서 자료를 이용하고 공간정보를 함께 결합하였을 때 향상된 분류 정확도를 얻을 수 있었다.

식생 모니터링을 위한 다중 위성영상의 시공간 융합 모델 비교 (Comparison of Spatio-temporal Fusion Models of Multiple Satellite Images for Vegetation Monitoring)

  • 김예슬;박노욱
    • 대한원격탐사학회지
    • /
    • 제35권6_3호
    • /
    • pp.1209-1219
    • /
    • 2019
  • 지속적인 식생 모니터링을 위해서는 다중 위성자료의 시간 및 공간해상도의 상호 보완적 특성을 융합한 높은 시공간해상도에서의 식생지수 생성이 필요하다. 이 연구에서는 식생 모니터링에서 다중 위성자료의 시공간 융합 모델에 따른 시계열 변화 정보의 예측 정확도를 정성적, 정량적으로 분석하였다. 융합 모델로는 식생 모니터링 연구에 많이 적용되었던 Spatial and Temporal Adaptive Reflectance Fusion Model(STARFM)과 Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model(ESTARFM)을 비교하였다. 예측 정확도의 정량적 평가를 위해 시간해상도가 높은 MODIS 자료를 이용해 모의자료를 생성하고, 이를 입력자료로 사용하였다. 실험 결과, ESTARFM에서 시계열 변화 정보에 대한 예측 정확성이 STARFM보다 높은 것으로 나타났다. 그러나 예측시기와 다중 위성자료의 동시 획득시기의 차이가 커질수록 STARFM과 ESTARFM 모두 예측 정확성이 저하되었다. 이러한 결과는 예측 정확성을 향상시키기 위해서는 예측시기와 가까운 시기의 다중 위성자료를 이용해야 함을 의미한다. 광학영상의 제한적 이용을 고려한다면, 식생 모니터링을 위해 이 연구의 제안점을 반영한 개선된 시공간 융합 모델 개발이 필요하다.