• Title/Summary/Keyword: Spatial error model

Search Result 430, Processing Time 0.032 seconds

Non-Gaussian features of dynamic wind loads on a long-span roof in boundary layer turbulences with different integral-scales

  • Yang, Xiongwei;Zhou, Qiang;Lei, Yongfu;Yang, Yang;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.421-435
    • /
    • 2022
  • To investigate the non-Gaussian properties of fluctuating wind pressures and the error margin of extreme wind loads on a long-span curved roof with matching and mismatching ratios of turbulence integral scales to depth (Lux/D), a series of synchronized pressure tests on the rigid model of the complex curved roof were conducted. The regions of Gaussian distribution and non-Gaussian distribution were identified by two criteria, which were based on the cumulative probabilities of higher-order statistical moments (skewness and kurtosis coefficients, Sk and Ku) and spatial correlation of fluctuating wind pressures, respectively. Then the characteristics of fluctuating wind-loads in the non-Gaussian region were analyzed in detail in order to understand the effects of turbulence integral-scale. Results showed that the fluctuating pressures with obvious negative-skewness appear in the area near the leading edge, which is categorized as the non-Gaussian region by both two identification criteria. Comparing with those in the wind field with matching Lux/D, the range of non-Gaussian region almost unchanged with a smaller Lux/D, while the non-Gaussian features become more evident, leading to higher values of Sk, Ku and peak factor. On contrary, the values of fluctuating pressures become lower in the wind field with a smaller Lux/D, eventually resulting in underestimation of extreme wind loads. Hence, the matching relationship of turbulence integral scale to depth should be carefully considered as estimating the extreme wind loads of long-span roof by wind tunnel tests.

CNN-based Adaptive K for Improving Positioning Accuracy in W-kNN-based LTE Fingerprint Positioning

  • Kwon, Jae Uk;Chae, Myeong Seok;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.217-227
    • /
    • 2022
  • In order to provide a location-based services regardless of indoor or outdoor space, it is important to provide position information of the terminal regardless of location. Among the wireless/mobile communication resources used for this purpose, Long Term Evolution (LTE) signal is a representative infrastructure that can overcome spatial limitations, but the positioning method based on the location of the base station has a disadvantage in that the accuracy is low. Therefore, a fingerprinting technique, which is a pattern recognition technology, has been widely used. The simplest yet widely applied algorithm among Fingerprint positioning technologies is k-Nearest Neighbors (kNN). However, in the kNN algorithm, it is difficult to find the optimal K value with the lowest positioning error for each location to be estimated, so it is generally fixed to an appropriate K value and used. Since the optimal K value cannot be applied to each estimated location, therefore, there is a problem in that the accuracy of the overall estimated location information is lowered. Considering this problem, this paper proposes a technique for adaptively varying the K value by using a Convolutional Neural Network (CNN) model among Artificial Neural Network (ANN) techniques. First, by using the signal information of the measured values obtained in the service area, an image is created according to the Physical Cell Identity (PCI) and Band combination, and an answer label for supervised learning is created. Then, the structure of the CNN is modeled to classify K values through the image information of the measurements. The performance of the proposed technique is verified based on actual data measured in the testbed. As a result, it can be seen that the proposed technique improves the positioning performance compared to using a fixed K value.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.

Experiments of Individual Tree and Crown Width Extraction by Band Combination Using Monthly Drone Images (월별 드론 영상을 이용한 밴드 조합에 따른 수목 개체 및 수관폭 추출 실험)

  • Lim, Ye Seul;Eo, Yang Dam;Jeon, Min Cheol;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Drone images with high spatial resolution are emerging as an alternative to previous studies with extraction limits in high density forests. Individual tree in the dense forests were extracted from drone images. To detect the individual tree extracted through the image segmentation process, the image segmentation results were compared between the combination of DSM and all R,G,B band and the combination of DSM and R,G,B band separately. The changes in the tree density of a deciduous forest was experimented by time and image. Especially the image of May when the forests are dense, among the images of March, April, May, the individual tree extraction rate based on the trees surveyed on the site was 50%. The analysis results of the width of crown showed that the RMSE was less than 1.5m, which was the best result. For extraction of the experimental area, the two sizes of medium and small trees were extracted, and the extraction accuracy of the small trees was higher. The forest tree volume and forest biomass could be estimated if the tree height is extracted based on the above data and the DBH(diameter at breast height) is estimated using the relational expression between crown width and DBH.

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS) (산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발)

  • Lee, HoonTaek;WON, Myoung-Soo;YOON, Suk-Hee;JANG, Keun-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.21-36
    • /
    • 2019
  • Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.

Investigating Applicability of Unmanned Aerial Vehicle to the Tidal Flat Zone (조간대 갯벌에서 무인항공기 활용 가능성에 관한 연구 - 수치표고모델을 중심으로 -)

  • Kim, Bum-Jun;Lee, Yoon-Kyung;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.461-471
    • /
    • 2015
  • In this study, we generated orthoimages and Digital Elevation Model (DEM) from Unmanned Aerial Vehicle (UAV) to confirm the accuracy of possibility of geospatial information system generation, then compared the DEM with the topographic height values measured from Real Time Kinematic-GPS (RTK-GPS). The DEMs were generated from aerial triangulation method using fixed-wing UAV and rotary-wing UAV, and DEM based on the waterline method also generated. For the accurate generation of mosaic images and DEM, the distorted images occurred by interior and exterior orientation were corrected using camera calibration. In addition, we set up the 30 Ground Control Points (GPCs) in order to correct of the UAVs position error. Therefore, the mosaic images and DEM were obtained with geometric error less than 30 cm. The height of generated DEMs by UAVs were compared with the levelled elevation by RTK-GPS. The value of R-square is closely 1. From this study, we could confirm that accurate DEM of the tidal flat can be generated using UAVs and these detailed spatial information about tidal flat will be widely used for tidal flat management.

Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer (정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로)

  • Shin, Yeji;Han, Daehyeon;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1405-1423
    • /
    • 2021
  • Precipitation is one of the main factors that affect water and energy cycles, and its estimation plays a very important role in securing water resources and timely responding to water disasters. Satellite-based quantitative precipitation estimation (QPE) has the advantage of covering large areas at high spatiotemporal resolution. In this study, machine learning-based rainfall intensity models were developed using Himawari-8 Advanced Himawari Imager (AHI) water vapor channel (6.7 ㎛), infrared channel (10.8 ㎛), and weather radar Column Max (CMAX) composite data based on random forest (RF). The target variables were weather radar reflectivity (dBZ) and rainfall intensity (mm/hr) converted by the Z-R relationship. The results showed that the model which learned CMAX reflectivity produced the Critical Success Index (CSI) of 0.34 and the Mean-Absolute-Error (MAE) of 4.82 mm/hr. When compared to the GeoKompsat-2 and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) rainfall intensity products, the accuracies improved by 21.73% and 10.81% for CSI, and 31.33% and 23.49% for MAE, respectively. The spatial distribution of the estimated rainfall intensity was much more similar to the radar data than the existing products.

Automatic Drawing and Structural Editing of Road Lane Markings for High-Definition Road Maps (정밀도로지도 제작을 위한 도로 노면선 표시의 자동 도화 및 구조화)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.363-369
    • /
    • 2021
  • High-definition road maps are used as the basic infrastructure for autonomous vehicles, so the latest road information must be quickly reflected. However, the current drawing and structural editing process of high-definition road maps are manually performed. In addition, it takes the longest time to generate road lanes, which are the main construction targets. In this study, the point cloud of the road lane markings, in which color types(white, blue, and yellow) were predicted through the PointNet model pre-trained in previous studies, were used as input data. Based on the point cloud, this study proposed a methodology for automatically drawing and structural editing of the layer of road lane markings. To verify the usability of the 3D vector data constructed through the proposed methodology, the accuracy was analyzed according to the quality inspection criteria of high-definition road maps. In the positional accuracy test of the vector data, the RMSE (Root Mean Square Error) for horizontal and vertical errors were within 0.1m to verify suitability. In the structural editing accuracy test of the vector data, the structural editing accuracy of the road lane markings type and kind were 88.235%, respectively, and the usability was verified. Therefore, it was found that the methodology proposed in this study can efficiently construct vector data of road lanes for high-definition road maps.

Prediction of Salinity of Nakdong River Estuary Using Deep Learning Algorithm (LSTM) for Time Series Analysis (시계열 분석 딥러닝 알고리즘을 적용한 낙동강 하굿둑 염분 예측)

  • Woo, Joung Woon;Kim, Yeon Joong;Yoon, Jong Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.128-134
    • /
    • 2022
  • Nakdong river estuary is being operated with the goal of expanding the period of seawater inflow from this year to 2022 every month and creating a brackish water area within 15 km of the upstream of the river bank. In this study, the deep learning algorithm Long Short-Term Memory (LSTM) was applied to predict the salinity of the Nakdong Bridge (about 5 km upstream of the river bank) for the purpose of rapid decision making for the target brackish water zone and prevention of salt water damage. Input data were constructed to reflect the temporal and spatial characteristics of the Nakdong River estuary, such as the amount of discharge from Changnyeong and Hamanbo, and an optimal model was constructed in consideration of the hydraulic characteristics of the Nakdong River Estuary by changing the degree according to the sequence length. For prediction accuracy, statistical analysis was performed using the coefficient of determination (R-squred) and RMSE (root mean square error). When the sequence length was 12, the R-squred 0.997 and RMSE 0.122 were the highest, and the prior prediction time showed a high degree of R-squred 0.93 or more until the 12-hour interval.