DOI QR코드

DOI QR Code

Investigating Applicability of Unmanned Aerial Vehicle to the Tidal Flat Zone

조간대 갯벌에서 무인항공기 활용 가능성에 관한 연구 - 수치표고모델을 중심으로 -

  • Kim, Bum-Jun (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology) ;
  • Lee, Yoon-Kyung (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology) ;
  • Choi, Jong-Kuk (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
  • 김범준 (한국해양과학기술원 해양위성센터) ;
  • 이윤경 (한국해양과학기술원 해양위성센터) ;
  • 최종국 (한국해양과학기술원 해양위성센터)
  • Received : 2015.10.08
  • Accepted : 2015.10.26
  • Published : 2015.10.31

Abstract

In this study, we generated orthoimages and Digital Elevation Model (DEM) from Unmanned Aerial Vehicle (UAV) to confirm the accuracy of possibility of geospatial information system generation, then compared the DEM with the topographic height values measured from Real Time Kinematic-GPS (RTK-GPS). The DEMs were generated from aerial triangulation method using fixed-wing UAV and rotary-wing UAV, and DEM based on the waterline method also generated. For the accurate generation of mosaic images and DEM, the distorted images occurred by interior and exterior orientation were corrected using camera calibration. In addition, we set up the 30 Ground Control Points (GPCs) in order to correct of the UAVs position error. Therefore, the mosaic images and DEM were obtained with geometric error less than 30 cm. The height of generated DEMs by UAVs were compared with the levelled elevation by RTK-GPS. The value of R-square is closely 1. From this study, we could confirm that accurate DEM of the tidal flat can be generated using UAVs and these detailed spatial information about tidal flat will be widely used for tidal flat management.

이 연구에서는 무인항공기를 이용하여 연안 갯벌의 정확한 공간지형정보 생성 가능성을 검토하고자 정사영상과 수치표고모델을 생성하였다. RTK-GPS로 측량한 고도 값을 이용하여 수치표고모델의 정확도를 분석하였다. 고정익 무인항공기와 회전익 무인항공기를 이용하여 항공삼각측량법으로 수치표고모델을 생성하였고, 조위상태가 다른 영상의 수륙경계선 추출법을 사용해 수치표고모델을 생성하였다. 정확한 정사영상과 수치표고모델을 생성하기 위해 촬영한 카메라의 내부표정 및 외부표정에 의해 발생한 왜곡과 무인항공기 자세변화로 발생한 왜곡을 보정해 주었다. 또한 위치오차를 보정하기 위해 31개의 지상기준점을 설치하였으며 이를 통해 30 cm 이내의 위치오차를 갖는 정사영상과 수치표고모델을 생성하였다. 갯벌에서 일정한 간격으로 측량한 2개 라인에 대한 RTK-GPS 고도자료와 무인항공기로 측량한 수치표고모델을 비교한 결과 $R^2$ 값이 1에 가까운 결과를 확인할 수 있었다. 연안 갯벌에서 높은 정확도의 수치표고모델 생성이 가능하며, 무인항공기를 이용한 연안 갯벌에서의 공간지형정보 활용은 매우 유용할 것으로 판단된다.

Keywords

References

  1. Bendea, H., P. Boccardo, S. Dequal, F. Giulio Tonolo, D. Marenchino, and M. Piras, 2008. Low cost UAV for post-disaster assessment, Proc. of The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, July. 3-11, vol. 37, pp. 1373-1379.
  2. Choi, J.K. and J.H. Ryu, 2011. A study on the sedmentary facies change in the tidal flat using high spatial resolution remotely sensed data, Economic and Environmental Geology, 44(1): 59-70 (In Korean with English abstract). https://doi.org/10.9719/EEG.2011.44.1.059
  3. Gao, D. and F. Yin, 2013. Computing a complete camera lens distortion model by planar homography, Optics and Laser Technology, 49: 95-107. https://doi.org/10.1016/j.optlastec.2012.12.004
  4. Gulch, E., 2012. Photogrammetric measurements in fixed wign UAV imagery, The International Archives of the Photogrammetry, Proc. of Remote Sensing and Spatial Information Sciences, Melbourne, Australia, August. 25-September. 01, vol. 34, pp. 381-386 (In Korean with English abstract).
  5. Hunt, E.R., W.D. Hively, S.J. Fujikawa, D.S. Linden, C.S.T. Daughtry, and G.W. McCarty, 2010. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for cop monitoring, Remote Sensing, 2: 290-305. https://doi.org/10.3390/rs2010290
  6. Kim, T.R. and S.K. Park, 2006. Study on intertidal flat topography observation using camera images, Journal of the Korean Society of Oceanography, 11(4): 145-151 (In Korean with English abstract).
  7. Lin, J., H. Tao, Y. Wang, and Z. Huang, 2010. Practical application of unmanned aerial vehicles for mountain hazards survey, Proc. of International Conference on Geoinformatics, Chengdu, China, June. 18-20, pp. 1-5.
  8. Lowe, D., 2004. Distinctive image features from scaleinvariant keypoints, International Journal of Computer Vision, 60(2): 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  9. Mancini, F., M. Dubbini, M. Gattelli, F. Stecchi, S. Fabbri, and G. Gabbianelli, 2013. Using Unmanned Aerial Vehicles (UAV) for highresolution reconstruction of topography: The structure from motion approach on coastal environments, Remote Sensing, 5: 6880-6898. https://doi.org/10.3390/rs5126880
  10. Mason, D.C., I.J. Davenport, and G.J. Robinson, 1995. Construction of an inter-tidal digital elevation model by the 'water-line' method, Geophysical Research Letters, 22(23): 3187-3190. https://doi.org/10.1029/95GL03168
  11. Park, J.W., Y.K. Lee, and J.S. Won, 2009. Investigation of intertidal zone using TerraSAR-X, Korean Journal of Remote Sensing, 25(4): 383-389 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2009.25.4.383
  12. Rieke, M., T. Foerster, J. Geipel, and T. Prinz, 2011. High-Precision positioning and real-time data processing of UAV systems, Proc. of The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Zurich, Switzerland, Sep. 14-16, vol. 38-1/C22, pp. 1-6.
  13. Rosnell, T. and E. Honkavaara, 2012. Point cloud generation from aerial image data acquired by a Quadrocopter type micro unmanned aerial vehicle and a digital still camera, Sensors, 12(1): 453-480. https://doi.org/10.3390/s120100453
  14. Ruiz, J.J., L. Diaz-Mas, F. Perez, and A. Viguria, 2013. Evaluating the Accuracy of DEM generation algorithms from UAV imagery, The International Archives of the Photogrammetry, Proc. of Remote Sensing and Spatial Information Sciences, Rostock, Germany, Sep. 4-6, vol. 40-1/W2, pp. 333-337.
  15. Ryu, J.H., J.K. Choi, Y.H. Na, and J.S. Won, 2003. Characteristics of Landsat ETM+ image for Gomso bay tidal flat sediments, Korean Journal of Remote Sensing, 19(2): 117-133 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2003.19.2.117
  16. Ryu, J.H., W.J. Cho, J.S. Won, I.T. Lee, S.S. Chun, A.S. Suh, and K.L. Kim, 2000. Intertidal DEM generation using waterline extracted from remotely sensed data, Korean Journal of Remote Sensing, 16(3): 221-233 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2000.16.3.221
  17. Suzuki, T., D. Miyoshi, J. Meguro, Y. Amano, T. Hashizume, K. Sato, and J. Takiguchi, 2008. Real-time hazard map generation using small unmanned aerial vehicle, Proc. of SICE annual conference, Tokyo, Japan, Aug. 20-22, pp. 443-446.
  18. Tahar, K.N., A. Ahmad, and W.A.A.W.M. Akib, 2011. UAV-based stereo vision for photogrammetric survey in aerial terrain mapping, Proc. of International Conference on Computer Applications and Industrial Electronics, Penang, Malaysia, Dec. 4-7, pp. 443-447.
  19. Xiang, H. and L. Tian, 2011a. Development of a lowcost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV), Biosystems Engineering, 108(2): 174-190. https://doi.org/10.1016/j.biosystemseng.2010.11.010
  20. Xiang, H. and L. Tian, 2011b. Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform, Biosystems Engineering, 108(2): 104-113. https://doi.org/10.1016/j.biosystemseng.2010.11.003
  21. Yuan, X., J. Fu, H. Sun, and C. Toth, 2009. The application of GPS precise point positioning technology in aerial triangulation, Photogrammetry and Remote Sensing, 64(6): 541-550. https://doi.org/10.1016/j.isprsjprs.2009.03.006
  22. Zhang, Z., 1999. Flexible camera calibration by viewing a plane from unknown orientations, Proc. of the International Conference on Computer Vision, Kerkyra, Greece, Sep. 20-27, vol. 1, pp. 666-673.

Cited by

  1. Monitoring algal bloom in river using unmanned aerial vehicle(UAV) imagery technique vol.32, pp.6, 2018, https://doi.org/10.11001/jksww.2018.32.6.573
  2. 고정익 무인비행기를 이용한 수계 내 녹조 모니터링 연구 vol.27, pp.2, 2015, https://doi.org/10.5391/jkiis.2017.27.2.164
  3. How to utilize vegetation survey using drone image and image analysis software vol.41, pp.4, 2017, https://doi.org/10.1186/s41610-017-0035-2
  4. 동해안 군사시설보호구역 주변 향호 연안역을 대상으로 무인항공사진측량에 관한 예비 연구 vol.39, pp.2, 2015, https://doi.org/10.4217/opr.2017.39.2.159
  5. 드론 항공사진측량 기법을 활용한 갯벌지역 모델링 및 갯골정보 추출에 관한 연구 vol.25, pp.3, 2017, https://doi.org/10.7319/kogsis.2017.25.3.043
  6. 카메라 검정 방법과 내부표정 요소 적용에 따른 UAS 기반의 DSM 정확도 평가 vol.33, pp.5, 2015, https://doi.org/10.7780/kjrs.2017.33.5.3.3
  7. 원격탐사기반 연안주제도 선진화 방안 연구 vol.33, pp.6, 2015, https://doi.org/10.7780/kjrs.2017.33.6.2.10
  8. 다중 원격탐사 플랫폼 기반 곰소만 갯벌 정밀 지형변화 연구 vol.36, pp.2, 2020, https://doi.org/10.7780/kjrs.2020.36.2.2.4
  9. 저고도 원격탐사 영상 분석을 통한 수륙경계선 추출 vol.36, pp.2, 2015, https://doi.org/10.7780/kjrs.2020.36.2.2.9
  10. 고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석 vol.36, pp.6, 2015, https://doi.org/10.7780/kjrs.2020.36.6.2.10