DOI QR코드

DOI QR Code

Comparison of Forest Carbon Stocks Estimation Methods Using Forest Type Map and Landsat TM Satellite Imagery

임상도와 Landsat TM 위성영상을 이용한 산림탄소저장량 추정 방법 비교 연구

  • Kim, Kyoung-Min (Division of Global Forestry, National Institute of Forest Science) ;
  • Lee, Jung-Bin (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Jung, Jaehoon (Department of Photogrammetry, University of Bonn)
  • 김경민 (국립산림과학원 국제산림연구과) ;
  • 이정빈 (연세대학교 토목환경공학과) ;
  • 정재훈 (독일 본대학교 사진측량학과)
  • Received : 2015.09.03
  • Accepted : 2015.10.28
  • Published : 2015.10.31

Abstract

The conventional National Forest Inventory(NFI)-based forest carbon stock estimation method is suitable for national-scale estimation, but is not for regional-scale estimation due to the lack of NFI plots. In this study, for the purpose of regional-scale carbon stock estimation, we created grid-based forest carbon stock maps using spatial ancillary data and two types of up-scaling methods. Chungnam province was chosen to represent the study area and for which the $5^{th}$ NFI (2006~2009) data was collected. The first method (method 1) selects forest type map as ancillary data and uses regression model for forest carbon stock estimation, whereas the second method (method 2) uses satellite imagery and k-Nearest Neighbor(k-NN) algorithm. Additionally, in order to consider uncertainty effects, the final AGB carbon stock maps were generated by performing 200 iterative processes with Monte Carlo simulation. As a result, compared to the NFI-based estimation(21,136,911 tonC), the total carbon stock was over-estimated by method 1(22,948,151 tonC), but was under-estimated by method 2(19,750,315 tonC). In the paired T-test with 186 independent data, the average carbon stock estimation by the NFI-based method was statistically different from method2(p<0.01), but was not different from method1(p>0.01). In particular, by means of Monte Carlo simulation, it was found that the smoothing effect of k-NN algorithm and mis-registration error between NFI plots and satellite image can lead to large uncertainty in carbon stock estimation. Although method 1 was found suitable for carbon stock estimation of forest stands that feature heterogeneous trees in Korea, satellite-based method is still in demand to provide periodic estimates of un-investigated, large forest area. In these respects, future work will focus on spatial and temporal extent of study area and robust carbon stock estimation with various satellite images and estimation methods.

기존의 국가산림자원조사(National Forest Inventory, NFI)에 의한 산림탄소저장량 추정 방법은 국가 규모의 평균 탄소저장량 추정에는 충분하지만 표본점 개수가 부족한 시 군 단위의 세밀한 추정은 어렵다. 본 연구에서는 시 군별 산림탄소저장량 추정을 위해 공간 자료를 보조 자료로 이용하고 2가지 업스케일링 방법을 적용하여 격자별 산림탄소저장량 정보를 가진 산림탄소지도를 제작하였다. 대상지역은 충청남도로 2가지 방법 모두 제 5차 NFI(2006~2009) 자료를 활용하였다. 방법 1은 임상도를 보조 자료로 선택하고 NFI 기반 산림탄소저장량 회귀모델을 이용하였다. 방법 2는 위성영상을 보조 자료로 선택하고 k-NN을 이용하여 산림탄소저장량을 추정하였다. 불확실성을 고려하기 위해 200회 몬테카를로 시뮬레이션을 수행하여 최종 AGB 탄소지도를 산출하였다. 방법 1에서는 충청남도의 총 산림탄소저장량이 22,948,151 tonC으로 기존의 현지조사표본 기반 추정치(21,136,911 tonC)에 비해 과대추정을, 방법 2에서는 19,750,315 tonC로 과소추정되는 경향을 나타내었다. 독립검증 지점(n=186)의 탄소저장량에 대한 대응표본 T-검정 결과, 방법 2의 평균 추정치와 NFI 표본 기반 평균 추정치는 통계적으로 유의한 차이가 있는 반면(p<0.01), 방법 1의 평균 추정치는 NFI 표본 기반 평균 추정치와 통계적으로 유의한 차이가 없는 것으로 평가되었다(p>0.01). 특히, 방법 2의 경우 k-NN의 스무딩 효과 및 몬테카를로 시뮬레이션을 통해 위성영상과 표본점의 mis-registration 오차가 추정오차에 큰 영향을 미칠 수 있음이 발견되었다. 임상도를 활용한 방법 1이 임분 구조가 복잡한 우리나라 산림의 탄소량 추정에 효과적일 수 있지만, 미조사 지점의 주기적인 갱신 및 대면적 추정에 유리한 위성영상의 활용은 여전히 필수적이다, 따라서 시공간적인 확장과 함께 보다 신뢰할 수 있는 산림탄소저장량 추정을 위해 다양한 위성영상 자료 및 활용 기법에 관한 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Chung, S.Y., J.S. Yim, J.H. Hwang, H.K. Cho, and M.Y. Shin, 2009. Forest Biomass Estimation and Mapping for Muju County using BioCLUST Method, Proc. of the 2009 Annual Meeting of the Korean Forest Society, 443-446 (In Korean with English abstract).
  2. Civco, D.L., 1989. Topographic normalization of Landsat thematic mapper digital imagery, Photogrammetric Engineering and Remote Sensing, 55: 1303-1309.
  3. Forest Service, 2009. Climate change and forest. p. 244.
  4. Fournier, R.A., J.E. Luther, L. Guindon, M.C. Lambert, D. Piercey, R.J. Hall, and M.A. Wulder, 2003. Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec, The Canadian Journal of Research, 33: 1846-1863. https://doi.org/10.1139/x03-099
  5. Goetz, S.J, A. Baccini, N.T. Laporte, T. Johns, W. Walker, J. Kellndorter, R.A. Houghton, and M. Sun, 2009. Mapping and monitoring carbon stocks with satellite observations: a comparison of methods, Carbon Balance and Management, 4(2): 1-7. https://doi.org/10.1186/1750-0680-4-1
  6. Jung, J.H., J. Heo, S.H. Yoo, K.M. Kim, and J.B. Lee, 2010. Estimation of Aboveground Biomass Carbon Stock in Danyang Area using kNN Algorithm and Landsat TM Seasonal Satellite Images, The Korean Society for Geospatial Information System, 18(4): 119-129 (In Korean with English abstract).
  7. Kim, E.S., K.M. Kim, J.B. Lee, S.H. Lee, and C.C. Kim, 2011. Spatial Upscaling of Aboveground Biomass Estimation using National Forest Inventory Data and Forest Type Map, Journal of Korean Forest Society, 100(3): 455-465 (In Korean with English abstract).
  8. Kim, K.M., J.B. Lee, E.S. Kim, H.J. Park, Y.H. Roh, S.H. Lee, K.H. Park, and H.S. Shin, 2011. Overview of research trends in forest carbon stocks estimation based on remote sensing and GIS, Journal of the Korean Association of Geographic Information Studies, 14(3): 28-39 (In Korean with English abstract). https://doi.org/10.11108/kagis.2011.14.2.028
  9. Kim, K.M., 2012. Spatially explicit estimation and the uncertainty analysis of carbon stocks in pine forest using growth model and GIS: The case of Danyang area, Chungcheongbuk-do, doctoral dissertation, Seoul National University, Korea (In Korean with English abstract).
  10. Kim, K.M., Y.H. Roh, and E.S. Kim, 2014. Comparison of three kinds of methods on estimation of forest carbon stocks distribution using national forest inventory DB and forest type map, Journal of the Korean Association of Geographic Information Studies, 17(4): 69-85 (In Korean with English abstract). https://doi.org/10.11108/kagis.2014.17.4.069
  11. Kim, T.G., K.E. Kim, G.S. Cho, and H.G. Kim, 1996. Monitoring of lake water quality using Landsat TM imagery data, Journal of the Korean Society for Geospatial Information System, 4(2): 23-33 (In Korean with English abstract).
  12. Korea Forest Research Institute, 2008. The 5th National Forest Inventory Report, Republic of Korea.
  13. Korea Forest Research Institute, 2011. Guideline for the 1:5,000 Forest Type Map, Republic of Korea.
  14. Korea Forest Service, 2011. Statistical Yearbook of Forestry.
  15. Labrecque, S., R.A. Fournier, J.E. Luther, and D. Piercey, 2006. A Comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland, Forest Ecology and Management, 226: 129-144. https://doi.org/10.1016/j.foreco.2006.01.030
  16. Tomppo E. and M. Katila, 1991. Satellite image-based national forest inventory of Finland, IGARSS '91, 3: 1141-1144.
  17. Wulder, M.A., J.C. White, R.A. Fournier, J.E. Luther, and S. Magnussen, 2008. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS, Sensors, 8: 529-560. https://doi.org/10.3390/s8010529
  18. Yim, J.S., W.S. Han, J.H. Hwang, S.Y. Chung, H.K. Cho, and M.Y. Shin, 2009. Estimation of Forest Biomass based upon Satellite Data and National Forest Inventory Data, Korean journal of remote sensing, 25(4): 311-320 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2009.25.4.311

Cited by

  1. Brief history of Korean national forest inventory and academic usage vol.43, pp.3, 2015, https://doi.org/10.7744/kjoas.20160032
  2. 산림의 CO2 흡수량 평가를 위한 통계 및 공간자료의 활용성 검토 - 안산시를 대상으로 - vol.27, pp.2, 2015, https://doi.org/10.14249/eia.2018.27.2.124
  3. 환경공간정보를 활용한 도시녹지의 탄소흡수량 추정 -안산시를 대상으로- vol.21, pp.3, 2015, https://doi.org/10.13087/kosert.2018.21.3.13
  4. 국지예보모델과 위성영상을 이용한 극상림 플럭스 관측의 공간연속면 확장 및 우리나라 산림의 일일 탄소흡수능 격자자료 산출 vol.36, pp.6, 2020, https://doi.org/10.7780/kjrs.2020.36.6.1.13