본 논문에서는 웨이블릿 변환을 이용한 새로운 디지털 워터마킹 방법을 제안한다. 웨이블릿 변환은 인간의 시각 구조와 상당히 유사한 다중해상도 특성을 지니고 있을 뿐 아니라, 영상을 공간 영역과 주파수 영역에 효과적으로 국부화 시키는 특성을 지니고 있기 때문에 영상처리에서 널리 연구되고 있는 방법이다. 웨이블릿 변환을 거친 계수들은 일반적으로 가우시안 분포를 따른다고 알려져 있기 때문에 제안한 방법에서는 비가시성과 견고함을 위해서 워터마크로서 가우시안 분포를 가지는 랜덤 벡터를 사용한다. 워터마크 삽입 과정에서는 워터마크가 영상 전체에 삽입될 수 있도록 하기 위해서 LL 부대역을 포함한 모든 부대역을 사용하고, 각 부대역에 대하여 레벨 적응적 이치화를 통해 시각적으로 중요한 웨이블릿 계수를 선택한다. 또한, 선택된 계수에 대하여 웨이블릿 특성에 따라서 각각 다른 가중치를 가지고 워터마크를 삽입한다. 워터마크 검출 과정에서는 벡터투영 방법을 사용하여 추출된 워터마크와 원래의 워터마크 사이의 유사도를 계산한다. 제안한 방법을 여러 가지 영상에 워터마킹해 본 결과, 워터마킹된 영상이 기존에 제안된 방법보다 시각적으로 손상이 없으면서, 여러 가지 압축, 영상처리, 기하학적 변환, 잡음 등에 강한 것을 확인하였다.
도시지역은 지구상에서 가장 변화가 활발히 일어나는 지역 중의 하나로써, 우리나라에서도 산림지나 녹지, 농경지가 주거지역, 공업지역 등의 주거지역으로 빠르게 변화하고 있다. 이러한 빠른 토지이용의 변화를 모니터링하기 위해서는 신속한 데이터의 취득을 필요로 하게 되고, 위성영상은 이러한 요구의 대안이 될 수 있다. 일반적으로 SAR 위성은 능동적 탐측체계로 영상을 취득하기 때문에 지표면의 거칠기에 따라 영상의 밝기값이 결정되며, 대표적으로 수계영역은 반사강도가 낮아 어둡게 나타나고, 인공구조물이 분포하고 있는 주거지역의 경우 반사강도가 높아 타 지역에 비해 밝기값이 높게 나타난다. 이러한 SAR 영상의 특성을 이용하면 주거지역을 효과적으로 추출할 수 있다. 본 연구에서는 고해상도 X-band SAR 위성인 독일의 TerraSAR-X, 우리나라의 KOMPSAT-5를 이용하여 주거지역의 추출을 수행하였으며, 추출을 위해서 영상분할기법을 통한 객체기반 영상분류를 적용하였다. 영상분할의 정확도를 향상시키기 위해서 스페클 divergence를 먼저 계산하여 주거지역의 반사강도를 조정하였다. 두 위성영상의 정확도 평가를 위해서 추가로 픽셀기반의 K-means 영상분류법을 적용하여 주거지역을 분류하였다. 연구의 결과로써 TerraSAR-X의 객체기반 영상분류법은 약 88.5%, 픽셀기반영상분류법은 75.9%, KOMPSAT-5는 약 87.3%와 74.4%의 overall accuracy를 보였다.
본 연구에서는 여러 지점의 온도를 동시에 측정할 수 있는 두 가지 온도 모니터링 기법을 소개하고 있다. 그 하나는 고유주소를 가지고 있는 온도센서로 구성된 온도센서 배열 케이블을 이용하는 기법이며, 다른 하나는 광섬유 센서를 이용하여 분포 온도를 측정하는 기법이다. 이 두 기법의 차이점은 다음과 같이 요약될 수 있다. 온도센서 배열 케이블은 온도센서가 위치하는 정확한 지점의 온도를 측정하게 된다. 그에 대한 온도 측정의 정밀도 및 분해능은 그 온도 센서의 성능에 따라 결정된다. 한편, 광섬유 센서는 레이저 펄스가 광섬유를 따라 보내질 때 생성되는 Raman 역산란파를 분석함으로써 온도를 측정하기 때문에 분포 개념의 온도를 측정하게 된다. 그에 대한 온도 분해능은 측정거리, 측정시간 및 온도측정 거리분해능에 따라 결정된다. 본 논문은 두 가지 온도 모니터링 시스템의 장단점을 비교함으로써 기술적이고 경제적인 측면에서 그의 응용분야를 면밀히 검토하는 데 그 목적이 있다. 이를 위해 두 기법을 이용한 다양한 실험을 실시하였다. 그 결과를 검토해 보면 온도센서 배열 케이블은 300m 범위 내의 지하수 흐름, 지열 분포 및 그라우팅 효과 검증에 적합할 것으로 판단되며 광섬유 센서는 상대적으로 긴 거리에 걸친 분포 온도에 대한 정보가 필요한 파이프 파인 감시, 터널 화재 감시 및 전력선 모니터링과 같은 분야에서 효율적으로 활용될 것이 기대된다.
Meta에서 신속한 영상 분할 기능을 제공하는 대규모 컴퓨터 비전 생성 모델을 발표한 이후, 여러 활용 분야에서 이를 적용하려는 연구가 이루어지고 있다. 이 연구에서는 위성 영상 자료에 Segment Anything Model (SAM)을 사용할 수 있는 QGIS 플러그인 Geo-SAM을 사용하여 수체 객체 탐지와 추출에 대한 SAM의 적용성을 조사해 보고자 하였다. 실험 대상 자료는 국토위성(Compact Advanced Satellite 500, CAS500-1) 영상을 사용하였다. 이 자료를 가지고 SAM을 적용하여 얻은 결과는 같은 입력 영상으로부터 수작업으로 제작한 수체 객체 자료, Open Street Map (OSM)의 수체 자료, 국토지리정보원의 수계 수치지도와 비교하였다. SAM 처리 결과와 비교 대상 자료를 이용하여 추출된 모든 객체를 대상으로 계산한 경계사각형의 교집합/합집합의 평균값을 나타내는 mean Intersection over Union (mIoU)은 각각 0.7490, 0.5905, 0.4921로 나타났고, 각 자료에서 공통으로 나타나거나 추출된 객체에 대해 계산한 결과는 차례대로 0.9189, 0.8779, 0.7715로 나타났다. SAM을 적용한 결과와 다른 비교 자료와의 공간적 일치도를 분석한 결과, SAM에서는 한 개의 수체 객체를 여러 개의 분할 요소로 나타내므로 수체 객체 분류를 지원하는 의미 있는 결과를 보이고 있음을 알 수 있다.
Landsat TM 영상을 이용, 명암차가 높은 산악 지역에 적용해왔던 알고리즘을 개선하여 비교적 명암차가 낮고 충적층이 넓게 분포하는 지역의 선구조를 추출하는 알고리즘을 개발하였다. 수치지형모델에 대하여 Local Enhancement를 이용, 평탄한 지역으로부터 충적층을 추출하였다. Zevenbergen & Thorno's Method를 3×3moving windowing을 통해서 최대 경사방향과 경사를 이용하여 충적층을 지나는 선구조 요소를 추출하고 다시 Hough 변환을 이용해서 1차 선구조를 추출하였다. 이로부터 충적층의 직각방향의 지형단면의 경사를 유추해서 spline 보간법을 이용해 단면의 최저점을 구하고 이 구해진 점들을 다시 Hough 변환을 이용해서 최종 선구조를 추출하였다. 본 연구에서 사용한 알고리즘은 기존 알고리즘에서 사용된 소창문보다 훨씬 큰 충적층이 분포하는 지역의 지형 경사가 수렴하는 부분에 선구조가 뚜렷이 나타남을 볼 수 있다. 최대경사방향과 경사를 구해서 얻어진 1차 선구조와 최종선구조에서 선구조 방향이 다소 차이를 보인다. 1차 선구조의 수직방향 지형단면의 자료를 이용함에 있어, 지형 단면의 시작점과 끝지점을 임의적으로 결정하는 것이 아니라, 충적층을 가로질러 최고점까지 또는 다음 충적층이 나을 때까지의 자료를 이용해서 보간법을 사용하였고, 충적층의 넓이에 따라 보간할 자료량의 차이에 의한 오차가 발생할 수 있다. 넓은 충적층에서 선구조가 잘 추출되는 반면에 좁은 충적층이 분포하거나 계곡에 해당하는 지역에서는 경사수렴부와 일치하지 않는 선구조가 추출되었다. 이는 향후 계속적으로 연구해서 보완되어야 할 것으로 사료된다. 차원에서 기준치 설정 및 주기적인 측정을 통해 지속적으로 관리를 해야 한다. 그리고 정기적인 특수건강진단의 실시와 같은 근본적인 해결방안을 찾아야겠다.l rectangular type to a wed농e type. The Proposed wedge shape makes the absorption length longer for obliquely incident photons, thus increasing the detection efficiency and suppressing leakage coefficient. For the BGO detectors of 4-8mm width, the computer simulation result of the system using wedge detectors reveals resolution improvement to the system using conventional detectors. For the system composed of 200 BGO detectors of 8mm width with 2 point sampling motion, the simulation resolution system using conventional detectors. For the very high resolution system of 3-7mm FWHM, the characteristics of the detector shape and size is studied by computer simulation.n, but also such efficient a parameter as to perform almost like entropy.소한 1대
본격적인 우주기술 활용시대가 전망되는 현재의 시점에서 고해상도 영상취득이 가능한 국토관측위성의 발사가 2021년으로 예정되어 있다. 이에 따라 국토관측위성의 지상국의 핵심설계요소로 영상사용자의 위성영상 활용성과 작업자의 처리효율성 증대가 강조되어 왔다. 이에 대응하여, 국토관측위성의 수집, 처리, 저장, 관리 및 활용을 위한 핵심기술과 국토관측위성 지상국의 운영시스템을 개발하는 국토관측위성 수집 및 활용기술개발 연구사업이 진행되었다. 본 논문에서는 상기 연구개발사업의 성과로 개발된 국토관측위성 활용핵심기술과 지상국 운영시스템 개발결과를 소개한다. 개발된 지상국 운영시스템은 한반도 전역의 GCP(Ground Control Point) chip DB(Database)와 DEM(Digital Elevation Model) DB를 시스템 내에 구축하여 자동화된 방식으로 정밀정사영상을 생성하기 위한 기술 및 시스템을 구현하였다. 나아가 생성된 정밀정사영상을 1:5,000 도엽단위로 분할한 도엽정사영상을 생산하여 향후 분석준비자료 (ARD(Analysis Ready Data)) 체계로 발전할 수 있도록 개발하였다. 또한 정밀정사영상 및 도엽정사영상으로부터 DSM(Digital Surface Model)자료, 변화탐지지도, 객체추출지도 등 다양한 활용산출물이 체계적으로 생산될 수 있도록 활용산출물 생산 SW를 지상국 운영시스템과 연동시킬 수 있게 개발하였다. 본 연구진이 개발한 국토위성정보 활용기술 및 운영시스템은 국내 최초로 한반도 GCP chip DB구축을 통해서 자동화된 정밀정사영상생성 기술을 확보하고 다양한 활용산출물의 생산을 위성지상국 운영시스템에 접목했다는 점에서 의의가 있다고 판단된다. 개발된 국토위성정보 운영시스템은 국토관측위성의 주 활용부처인 국토지리정보원 국토위성정보활용센터에 설치되었으며, 향후 동 센터의 업무에 크게 기여할 것으로 바라보고 있다. 또한, 향후 발사예정인 여러 저궤도 지구관측위성의 지상국 시스템에 대한 기준을 제시할 수 있을 것으로 기대한다.
현재 광도전체 물질을 이용한 직접변환방식의 방사선 검출기 연구가 활발히 진행되고 있다. 이러한 광도전체 물질 중 상용화된 비정질 셀레늄(a-Se)에 비해 요오드화수은($HgI_2$) 광도전체 화합물은 고에너지에 대한 높은 흡수율과 민감도를 가지는 것으로 보고되고 있다. 또한 이러한 광도전체 필름은 발생된 신호의 검출효율은 상하부 전극크기에 의한 전기장의 세기 및 기하학적 분포에 많은 영향을 미치는 것으로 보고되고 있다. 이에 본 연구는 $HgI_2$ 광도전체 필름에서 상하부 전극의 크기에 따른 X선 검출특성을 조사하였다. 시편제작은 기존의 진공 증착법이 두꺼운 대면적 필름제조가 어렵다는 문제점을 해결하고자 페이스트 인쇄법을 이용하여 인듐전극이 코팅된 유리기관위에 제작하였으며, 시편의 두께를 $150{\mu}m$, 면적크기를 $3cm{\times}3cm$ 크기로 제조하였다. 상부전극은 마그네틱 스퍼터링법을 이용하여 $3cm{\times}3cm$, $2cm{\times}2cm$, $1cm{\times}1cm$의 크기로 ITO(indium-tin-oxide)를 진공 증착하였다. 특성평가를 위해 X선 선량에 대한 민감도와 누설전류, 신호대잡음비를 측정하여 필름의 전기적 검출 특성을 정량적으로 평가하였다. 그 결과 상부전극의 크기가 증가함에 따라 검출된 신호의 크기가 다소 증가하는 경향을 보였다. 하지만, 전극크기의 증가에 따른 누설전류 또한 증가함으로써 신호대잡음비는 오히려 감소하는 것을 확인할 수 있었다. 이러한 결과로부터 향후 광도전체를 적용한 X선 영상검출기 개발에 있어 상부전극의 최적크기와 구조설계가 고려되어야 할 것으로 사료된다.
기후변화를 일으키는 외부강제력이 전지구적으로 동일하게 주어지더라도 그에 따른 기후변화와 되먹임 효과는 지역마다 다르게 나타난다. 따라서 기후변화에 나타난 내부변동성 및 다른 잡음 효과로부터 지구온난화 신호를 구별하기 위한 기후변화 탐지는 전구평균뿐만 아니라 지역규모에서도 이뤄져 왔다. 본 논문은 지구온난화로 인해 미래에 전례 없는 기후가 나타나는 시기를 추정하고 그 지역적 차이를 분석함이 목적이며 이를 위해, 기후모형 자료를 이용한 기존 연구와는 달리, 관측 자료를 이용하여 내부변동성을 추정하고 미래 온도변화를 전망하였다. 전례 없는 기후 시기는 미래에 예측된 지표 온도가 과거 관측 기록에 나타난 온도 범위를 벗어나 전례 없이 따뜻한 기후가 이후로도 지속되는 시점으로 정의하였다. 1880년부터 2014년까지 관측된 지표온도 아노말리의 연평균 시계열을 이용하여 온난화 선형추세를 계산하였고, 이 추세로부터 벗어난 최대 변이 값을 내부변동성의 크기로 간주하였다. 관측 자료로 구한 온난화 선형추세와 내부변동성의 크기가 미래에도 유지된다고 전제하고 계산한 결과에 따르면, 육지에서 전례없는 기후는, 아프리카는 서쪽에서, 유라시아는 인도와 아라비아 반도 남부 등 저위도에서, 북아메리카는 캐나다 중서부와 그린란드 등 고위도에서, 남아메리카는 아마존을 포함하는 저위도에서, 남극대륙은 로스해 주변지역에서 향후 200년 이내에 비교적 빨리 나타나며, 우리나라를 포함한 동아시아 일부 지역에서도 200년 이내로 빨리 나타난다. 반면에 북유럽을 포함하는 고위도 유라시아 지역과 미국과 멕시코를 포함하는 북아메리카 중남부에서는 400년 이후에 나타난다. 해양에서는 전례 없는 기후가 인도양, 중위도 북대서양과 남대서양, 남극해 일부 해역과 남극 로스해, 북극해 일부 해역에서 200년 이내로 비교적 빨리 나타나는 반면, 내부변동성이 큰 동적도태평양, 중위도 북태평양 등의 일부 해역에서는 수천 년이 지나야 오는 곳도 있다. 즉, 전례 없는 기후시기는 육지에서는 대륙마다 서로 다른 양상을 보이고 해양에서는 온난화 추세가 큰 고위도 해역을 제외하면 내부변동성의 영향을 많이 받는다. 결론적으로 지구온난화로 인한 전례 없는 기후는 특정 시기에 공통적으로 나타나는 것이 아니라 지역에 따라 시기적으로 상당한 차이가 있다. 따라서 기후변화 대응책을 마련할 때 온난화 추세뿐만 아니라 내부변동성의 크기도 함께 고려할 필요가 있다.
목적: 적혈구 혈액 풀 SPECT는 높은 특이도로 인하여, 간의 대표적인 양성 종양인 혈관종의 진단에 널리 사용되어 왔지만 낮은 해상도가 이 검사의 단점 중 하나였다. 최근 들어 ordered subset expectation maximization (OSEM)이라는 기술이 임상 핵의학 분야에서 단층영상의 재구성에 도입되고 있는 바, 저자들은 간 혈관종을 대상으로 기존의 역투사방식과 새로운 수정된 반복영상구성법인 OSEM을 비교하고자 하였다. 대상 및 방법: 24명의 간 혈관종 환자의 28개의 병변들 각각으로부터 이중 헤드 감마 카메라를 이용하여 단층영상 재구성을 위한 64개의 투사 영상을 얻었다. 이들 raw data는 LINUX운영체계의 개인용 컴퓨터에 보내서, 각각의 header file을 interfile로 대체하여 OSEM프로그램이 인식할 수 있도록 하였다. 최상의 영상을 구성하는 조건을 알아보기 위하여 다양한 subset 수(1, 2, 4, 8, 16 그리고 32) 및 반복계산 수 (1, 2, 4, 8, 그리고 16)하에서 재구성을 시도하여 4번의 반복계산과 16개의 subset일 때를 최적 조건으로 선택하였다. 이후 이 조건 하에서 OSEM과 역투사 방법으로 각각 모든 대상을 재구성한 후에 3명의 핵의학 및 방사선과 전문의가 특별한 정보 없이 모든 영상을 검토하였다. 결과: 28개의 병변을 맹검한 결과, 거의 모든 증례에서 OSEM이 역투사에 비교하여 최소한 대등하거나 우수한 영상의 질을 보여주었다. 비록 3 cm 이상의 큰 병변의 검출에는 차이가 없었으나 1.5-3 cm 크기의 병변 5개는 OSEM을 통하여서만 발견되었다. 하지만 1.5 cm 미만의 작은 병변 4개는 양쪽 모두에서 검출되지 않았다. 결론: OSEM은 작은 크기의 간 혈관종을 발견하는데 보다 높은 민감도를 보였으며 전체적인 영상의 질에 있어서도 보다 좋은 대조도와 윤곽을 보여주었다. OSEM은 이와 같은 장점 뿐만 아니라 높은 사양의 컴퓨터를 요하지않고 계산시간이 길지 않기 때문에 임상에서 간 혈관종의 진단을 위한 적혈구 혈액풀 SPECT에 쉽게 적용될 수 있는 좋은 방법으로 사료된다.
항공기 탑재용 초분광 카메라시스템에 의해 얻어진 영상데이터는 수십 내지 수백의 연속된 초분광 해상도로부터 동시에 각 화소별 완전한 분광 및 공간정보를 포함하고 있으므로 복잡한 연안지역에 대한 해안선 매핑, 특정재료로 이루어진 시설물 탐지, 연안지역의 토지이용 상세분석 및 변화 모니터링 등에 그 활용잠재성이 대단히 크다. 육역과 해역을 포함하는 연안지역을 대상으로 항공기 탑재 초분광센서인 CASI-1500으로부터 취득된 초분광 항공영상을 이용하여 분광각매퍼(SAM;Spectral Angle Mapper) 감독분류방법으로 토지피복분류를 행하였다. 첫번째, 대기보정영상에 대하여 육역과 해역이 포함된 지역에 대한 통합분류, 두번째, 육 해역의 통합분류결과로부터 육역과 해역의 분리 후 재분류, 그리고 세번째로 육역만을 대상으로 한 분류를 각각 수행하여 결과 및 정확도를 비교하였다. 또한 초분광 항공영상 48개 밴드로부터 IKONOS, QuickBird, KOMPSAT, GeoEye 등 고해상도 위성영상과 동일한 파장대의 4개 밴드영상, 그리고 WorldView-2 위성영상과 동일한 파장대의 8개 밴드영상만을 선택하여 각각 토지피복분류를 수행하고 초분광 48개 밴드영상으로 분류한 결과와 비교하였다. 연구결과, 연안지역에 대한 육역과 해역 통합영상으로 분류하는 것에 비해 육역과 해역 통합영상으로 분류한 후 육역과 해역을 분리하여 재분류를 수행하는 것이 효과적인 것으로 나타났다. 육역의 분류 결과에서 분광해상도가 높은 영상의 결과일수록 아스팔트나 콘크리트 도로가 더 정확하게 분류되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.